
ADVANCED NUMERICAL METHODS FOR
SIMULATING NONLINEAR MULTIRATE

LUMPED PARAMETER MODELS

by

NORBERT HENRY DOERRY

Naval Engineer
S.M. Electrical Engineering and Computer Science

Massachusetts Institute of Technology
(1989)

B.S. Electrical Engineering
United States Naval Academy

(1983)

SUBMITTED TO THE DEPARTMENT OF
OCEAN ENGINEERING

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
in the field of

NAVAL ELECTRICAL POWER SYSTEMS

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1991

  Norbert H. Doerry 1991

Signature of Author __________________________________________________________
Department of Ocean Engineering

12 May 1991

Certified by ________________________________________________________________
James L. Kirtley, Thesis Supervisor

Associate Professor of Electrical Engineering

Certified by ________________________________________________________________
Marija Ilic, Thesis Supervisor

Senior Research Engineer,
Department of Electrical Engineering and Computer Science

Accepted by ________________________________________________________________
A. Douglas Carmichael, Chairman

Ocean Engineering Departmental Graduate Committee

- 1 -



ADVANCED NUMERICAL METHODS FOR SIMULATING
NONLINEAR

MULTIRATE LUMPED PARAMETER MODELS
by

Norbert H. Doerry
Submitted on May 12, 1991 to the Department of Ocean Engineering in partial fulfillment of
the requirements for the degree of Doctor of Philosophy in the field of Naval Electrical
Power Systems.

ABSTRACT
Naval shipboard electric power systems are transitioning from the relatively simple

distribution of ship service electric power to extremely complex integrated electric drive
(IED) systems. The optimal design of warships employing IED is presently hampered by the
lack of existing simulation computer tools for analyzing the highly coupled and controlled
electro-mechanical systems characteristic of IED. As a first step in the development of a
viable computer simulation tool, the numerical algorithm testing program WAVESIM was
created.

The key contributions of WAVESIM are the systematic treatment of waveforms as an
abstract data type, the development of the terminal description of devices, and the use of
structural jacobians in system reduction.

WAVESIM represents variables by waveforms consisting of a vector of coefficients
and a waveform type code indicating how the coefficients should be interpreted. The
principal advantage of using waveforms over conventional discrete point methods is the
avoidance of unstable integration techniques since for most waveform types, integration and
differentiation are linear matrix operations.

Devices are described in WAVESIM by relationships between terminal interface
variables. WAVESIM recognizes two types of terminals: normal terminals having both
potential and flow variables, and information terminals having only a potential variable. In
this manner, WAVESIM can simulate processes involving both energy transfer and control
signals.

WAVESIM extends the structural jacobian matrix concept to reflect the properties of
the dependence of system equations on system variables. The system structural jacobian
matrix is constructed from the constitutive device structural jacobian matrices and is used to
identfiy a sequence of smaller blocks when can be solved consecutively for all the system
variables.

To demonstrate and verify the capabilities of WAVESIM, several simulations were
conducted. In all simulations, WAVESIM provide results matching data generated by other
simulation methods.

Thesis Supervisor: James L. Kirtley, Associate Professor of Electrical Engineering
Thesis Supervisor: Marija Ilic, Senior Research Engineer, Department of Electrical

Engineering and Computer Science
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Chapter 1 Introduction

A revolution is occurring in modern warship design. The conventional mechanical

transmission train for transferring power from the prime movers to the ships screws will be

replaced in future warship designs by an integrated electric drive (IED) system. While

electric drive is not a new concept, the IED approach differs significantly from previous

electric drive implementations in that both propulsion power and ship service power (60 HZ

440 Volts AC) are derived from the same prime movers. The resulting flexibility in the

arrangability of the ship, in the design of the electric plant, and in the power available to

combat systems provides the naval architect with many opportunities for significantly

improving the combat effectiveness of modern warships.

Designing a ship taking full advantage of the opportunities afforded by IED is not an

easy task or even obvious. The ship designer has no precedent for an IED ship let alone the

design of an IED electric plant. Instead, the designer must rely heavily on simulations of

proposed systems to evaluate the soundness of the design. For the electrical power system, a

suitable simulation environment must be capable of addressing these questions:

Will the Electric Power System Work?

This is the ultimate question which needs to be answered. Unfortunately defining

the term work is not an easy task, nor is assuring a system will work under all operating

conditions. A strict time domain simulation only provides a solution for a given set of

operating conditions. Generalizing the results of relatively few simulations to all

operating conditions is both necessary and prone to catastrophic failure. Hence more

than just a time response is usually needed.

How Will the System React to Major Disturbances and Faults?

The primary design goal for shipboard electric power systems is continuity of

power. To this end, the response of the system to abnormal events such as grounds,

stalled motors, and inadvertent opening of breakers is crucial to evaluating the success

of the electric power system design.

How Will the System React to Severe Dynamic Conditions?

A number of normal events can cause severe dynamic responses within the

system. Rapidly changing the propulsion motor speed or direction, discharging pulse

weapons, or starting large motors are all examples of normal dynamic events.
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Is the System Stable During a Given Dynamic Scenario?

One import aspect of a system that works is its stability. The system should

remain stable during all normal dynamic conditions and for as many disturbances and

faults as possible.

What is the Stability Margin?

Some measure of how stable the system is should be provided to assist in

generalizing the findings of stability about one scenario to other related scenarios.

What is the Sensitivity of the Results to Parameters?

The generation of models for a dynamic system simulation requires some

estimation of device parameters. Knowledge of the sensitivity of the simulation results

to parameter estimation errors is crucial for correlating simulation results with what can

be expected from the physical system.

How Correct are the Answers Provided to the Above Questions?

Simulations generally use numerical methods to generate solutions. Careful

control of error propagation is very important in ensuring accurate conclusions can be

drawn from the simulation results. Some form of feedback should be provided to the

operator as to the confidence level of the results.

These requirements for performing time domain simulations of proposed and existing

electric power systems found on United States naval warships can be quite challenging. The

size, complexity, and strong coupling of components all conspire to make the simulator’s

task difficult. At first glance, one would think the simulation programs designed for the

commercial power utilities would be sufficient for handling the smaller shipboard systems.

Unfortunately, this is not the case due to the following differences of the shipboard system

from commercial power systems:

Variable Frequency

Frequency cannot be assumed constant. Many IED designs have the generators,

motors, and ship service power all operating at different frequencies to optimize the

performance of individual components. Frequency changers are employed to convert

the power from one frequency to another. Even the ship service system onboard

mechanical drive ships can experience frequency fluctuations lasting up to 2 seconds.

The limited rotational intertia of the prime movers and generators allows for rapid

accelerations and decelerations of the shaft and corresponding frequency fluctuations.
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Lack of Time Scale Separation

The principal time constants of controls, machine dynamics, and electric

dynamics all fall within the same general range of milliseconds to seconds. The

practice of decomposing the problem by time scale separation often used in analyzing

commercial power systems becomes much more difficult.

Load Sharing instead of Power Scheduling

The commercial power utilities operate by scheduling the power delivered by

each of the generating units. The mismatch between scheduled power generation and

the actual load is met by a swing generator. Onboard ship however, both real and

reactive power are shared equally among all paralleled generators through the very fast

exchange of load sharing information. This fast exchange of information strongly

couples the dynamics of all the paralleled generators.

Short Electrical Distances

The distances onboard ship are so short (under 1000 ft) as to make the modelling

of transmission lines unnecessary for most simulations and to trivialize the load flow

problem which is so important to the commercial power sector. The short electrical

distances also strengthen the coupling of the various subsystems making up the

electrical power system.

Load Dynamics

Commercial utilities usually assume loads are either consuming constant real and

reactive power, or are constant impedances. Shipboard systems however, must account

for dynamics of loads such as propulsion motors, large pumps, pulsed loads, propeller

dynamics, and ship dynamics. Furthermore, the supervisory level control envisioned

for future designs may have the ability to control aspects of the loads in addition to

generation.

Tighter Control

Because a ship is relatively small, a higher level of control can be exercised over

the shipboard power system than can be exercised in the commercial power industry.

This higher level of control strengthens the dynamic coupling of components of the

system and complicates simulation efforts.

Clearly, shipboard systems are considerably different from commercial power systems;

and the inapplicability to shipboard power systems of simulation techniques developed for

commercial systems should not be surprising. Other simulation tools exist but for one or
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more reasons, all are ill-suited for simulating shipboard systems. A review of currently

available commercial software for solving lumped parameter systems reveals no program

currenty exists suitable for fulfilling the needs of simulating shipboard electric power

systems.

Circuit Simulators

As will be discussed in following sections, circuit simulators almost universally

describe devices in terms of branch voltages and currents. The constitutive

relationships are based only on the relative difference of the terminal variables and can

not depend on the actual nodal potentials. Furthermore, the flow variables must be

conserved on the device level. While these restrictions are not of concern for electrical

networks, they are a bit constraining on electro-mechanical systems where one would

like to deal with energy transformations in a device by employing equations which do

not conserve the flow variable on the device level. The torque on the input shaft of a

gearbox for example, does not equal the torque on the output shaft. Even electric

power models where the flow variable is power and the potential variable is voltage can

best be described by constitutive equation which do not enforce conserving power by

ignoring the power converted to heat through resistive losses.

Many circuit simulator also have problems modelling the transfer of information

which is common in systems employing control systems. Information has only

potentials and no flows associated with it.

Signal Analysis Software

Signal Analysis Software is often used to simulate control systems but often have

difficulty simulating energy transfer. In particular, these programs often are incapable

of solving implicit equations which are typically created by writing Kirchhoff’s Current

Law when developing systems. Instead much effort must be expended to ensure the

models have the appropriate input and output variables for a given system to be built.

Commercial Power Utility Analysis Programs

Software for analyzing commercial power universally do not apply to shipboard

systems due to several key differences. The lack of transmission lines, rotational

inertia, time scale separation of dynamics and the presence of tightly coupled control

loops are all features of the shipboard system which prevent the use of the commercial

power system analysis techniques [5] [9] [10] [11].
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General Differential Equation solvers

Most general differential equation solving programs cannot handle implicit

equations very well. While the development and interconnecting of models into

systems is possible, the process can be quite cumbersome [12] [13]. Dynamically stiff

systems also pose serious challenges to the general differential equation solvers.

Hybrid Computers

Hybrid computers for studying electrical power systems can answer many of the

desired questions for small shipboard systems. Unfortunately, hybrid computers are

very expensive and limited in the size of problems which can be addressed. Presently

the only hybrid computer in the United States suitable for shipboard power system

studies is located at Purdue University. While this machine is capable, the needs of the

IED program will require digital computer techniques for performing the desired

studies. [92] [93] [94] [95] [96]

As part of an effort to fill the need for simulating shipboard power systems, the

WAVESIM program was specially created to develop applicable simulation techniques.

Before discussing the numerical methods employed in WAVESIM, a review of existing

methods is appropriate.

1.1 Simulation Process

The process of simulating a physical system can be broken into three steps. First, a

system of equations describing the component device constitutive relationships as well as

the network constraints must be developed. While the network constraints are purely linear

algebraic equations, the constitutive equations can be nonlinear and dynamic. Together, a

system of nonlinear differential algebraic equations is generated. The next step is the

conversion of the system of differential algebraic equations into a sequence of purely

algebraic equations. Common integration techniques include the forward and backward

Euler methods, Trapezoidal rule integration, and the Runge-Kutta methods. Finally, the

nonlinear algebraic system is solved either through the Newton-Raphson method or through

one of several relaxation techniques.

Before describing several methods for generating and solving the system of equations

corresponding to a physical system, the difference between the branch description and

terminal description of devices should be detailed. The branch description of devices

requires all the constitutive relationships be based on the relative difference between

terminal potentials and all flows entering a device also leave the device. Hence for a two
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terminal device, there is a single branch potential variable and a single branch flow variable

associated with it. In the terminal description, the potential and flow associated with each

terminal are variables. A two terminal device would then have four variables associated

with it: two flow variables and two potentials. The terminal description allows the

constitutive equations be a function of the actual values of the terminal potentials and not

only of the potential difference. In other words, the potential reference can be set at the

system level and not necessarily on the device level. Furthermore, the flows are not

required to be conserved. A gear box for example, has differing torques entering and

exiting it. The branch description method requires a four terminal model of the gear box

while the terminal description requires only two terminals. In either case the result would

be four variables describing the gearbox, but the branch description requires an explicit

declaration of the device potential reference while the terminal description uses an implicit

system wide potential reference.

Branch Description vs. Terminal Description
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1.2 Developing System Equations

The normal method of describing a dynamic system is to generate a consistent set of

possibly nonlinear differential algebraic equations and arrange them into the following

canonical form:

where is the vector of dynamic state variables, is the vector of state variables with no

associated dynamics staes, and is the vector of system inputs. This system of differential

algebraic equations (DAE) can be generated several different ways with the most common

being the Sparse Tableu, Modified Nodal Analysis, and the standard load flow method.

The method employed in WAVESIM does not extract the differential equations from

the device constitutive equations but instead forms a system of algebraic equations of the

form:

where is the vector of the system variables and gi() is a device function having subsets

and

of and as arguments. The functions gi() have the dynamics of the device contained

within them, but these dynamics are not expressed on the system level.

Cẋ = f(x , y ,u )

0 = g (x , y ,u )

x y

u

0 = g (x ,gi(x i,ui),u )

x x i

u i

x u
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1.2.1 Sparse Tableau Method

The Sparse Tableau method is a very general method for describing systems

employing the branch description of devices. Proposed in [4] and used in the ASTAP and

SPICE simulators [1][15][16], the Sparse Tableau method breaks the system equations and

variables each into three groups. The three sets of variables are the branch currents, branch

voltages, and the nodal voltages. The three sets of equations are the node Kirchhoff

Current Law (KCL) equations in terms of the branch currents, Branch Voltage equations

relating branch voltages to nodal voltages, and the Constitutive equations relating branch

voltages to branch currents.

Figure 1.2.1-1 RC Example: Sparse Tableau

Figure 1.2.1-1 shows an example of a simple RC charging circuit. Using the Sparse

Tableau approach, the system variables are:

iS Voltage Source branch current

iR Resistor branch current

iC Capacitor branch current

vS Voltage Source branch voltage

vR Resistor branch voltage

vC Capacitor branch voltage

e1 Node 1 potential (voltage)

e2 Node 2 potential (voltage)

Note the reference node 0 is assigned a potential of 0.
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The KCL equations are given by:

The Branch Voltage equations are:

The Constitutive equations are:

While the Sparse Tableau approach generates a consistent set of network equations,

the size of the system is relatively large (eight equations in eight unknowns for this

example). Furthermore, the method employs the branch description of devices which

complicates the development of electro-mechanical models.

iS + iR = 0 −iR + iC = 0

vS − e1 = 0

vR − (e1 − e2) = 0

vC − e2 = 0

vS −VS = 0

vR − iRR = 0
iC −C

dvC

dt
= 0
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1.2.2 Modified Nodal Analysis

The Modified Nodal Analysis method generates a compact set of system equations

for systems of device models using branch descriptions. Modified Nodal Analysis (MNA)

was formalized in [6], described in [1][16], and employed in the circuit simulator MSINC.

The procedure consists of writing the KCL equations for all but the reference node in terms

of the branch currents, replacing the branch currents wherever possible with constitutive

equations in terms of the branch voltages, appending any remaining constitutive equations,

and substituting the branch voltages with the corresponding nodal voltages.

Figure 1.2.2-1 RC Example: Modified Nodal Analysis

Figure 1.2.2-1 shows a simple example of a simple RC charging circuit, the MDA

approach would first write the KCL equations:

Substituting the constitutive relations results in:

The extra constitutive equation is given by:

iS + iR = 0 −iR + iC = 0

iS +
1
R

vR = 0 −
1
R

vR +C
dvC

dt
= 0

vs −VS = 0
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Substituting the nodal voltage results in the system of three equations

While the Modified Nodal Analysis Method generates a compact set of equations, it

does require the use of the branch description as well as the explicit definition of flow

variables. Both restrictions can complicate teh modelling of electro-mechancial devices.

iS +
1
R
(e1 − e2) = 0 −

1
R
(e1 − e2) +C

de2

dt
= 0

e1 −VS = 0

- 20 -



1.2.3 Standard Load Flow

The Load Flow approach is traditionally used in the analysis of commercial power

systems. For this application, the flow variables are usually real and reactive power while

the potential variables are the voltage magnitude and phase angle. The Load Flow

approach is a variation of nodal analysis described in many papers and texts on power

systems including [14] [29] [31] [35] [49] [50] [76] [101]. The terminal description of

devices is used since power flow is not conserved on the device level (The power entering

a transmission line is not the same as the power leaving the same line). The basic

procedure is to write the KCL equations in terms of the node potentials. Nodes with ideal

potential sources are treated specially since their corresponding flow variable is not a

function of the device voltages.

Figure 1.2.3-1 RC Example : Load Flow

Figure 1.2.3-1 shows a simple RC charging circuit using the terminal description of

the devices. A load flow approach using currents as the flow variable would result in the

following procedure:

Write the KCL Equation at nodes without potential sources

Substitute Constitutive relationships for the flow variables

iR2 + iC1 = 0

1
R
(vR2 − vR1) +C

d (vC1 − vC2)
dt

= 0
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Substiute the nodal potentials

All the remaining variables can be calculated from the solution of this differential

equations. The load flow method definitely creates a very compact set of equations (only

one in this case) but requires the flow variables be defined explicitly in terms of the

potential variables, and must treat ideal potential sources as special exceptions. Neither of

these restrictions is attractive for a general electro-mechanical system simulator.

1
R
(e2 −VS) +C

de2

dt
= 0
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1.2.4 WAVESIM Terminal Description

The method employed in this thesis is similar to Modified Nodal Analysis with the

exception that terminal potentials are used instead of branch voltages and that the

constitutive equations are only expressed on the device level and never expressed on the

system level. Potential difference equations are appendended to the system of KCL

equations to equate explicitly defined potentials with their node potentials. For the RC

example, the system variables are given by:

iS1 Voltage Source terminal 1 current

iC1 Capacitor terminal 1 current

e0 Node 0 potential (voltage

e1 Node 1 potential (voltage)

e2 Node 2 potential (voltage)

 Figure 1.2.4-1: RC Example: Terminal Description

The KCL Equations for the RC example are given by:

iS1 + gR_iR1(e1,e2) = 0

iC1 + gR_iR2(e1,e2) = 0

iG + gS_iS2(iS1,e0) + gC_iC2(iC1,e0) = 0
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The Potential Difference Equations are given by:

Note that a reference device allowing for a more general method of setting the

system reference points is employed rather than a reference node. While the number of

equations is twice that of the Modified Nodal Analysis method, flows need not be

conserved on the device level. Furthermore, the system of equations is easily partitioned

into a sequence of five blocks for a more rapid solution (two 1×1 blocks, followed by a

2×2 block, followed by two more 1×1 blocks).

e2 − gC_vC1(iC1,e0) = 0

e1 − gS_vS1(iS1,e0) = 0

e0 − gG_vG(iG) = 0
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1.3 Solving System Equations

As stated earlier, the standard approach to simulating a physical system is to generate

a system of differential algebraic equation of the form:

To solve this system, it must first be converted to a system of purely algebraic

equations by substituting the differential equations with discrete approximations. The time

history of a variable is expressed as a series of discrete points in time where dynamics are

expressed as algebraic relationships between the values of a variable at different discrete

times. Standard methods for performing this approximation include the forward and

backward Euler, Trapezoidal rule integration and Runge-Kutta methods.

The major problem with this approach is the dependence of the time step on the fastest

mode (smallest eigenvalue) of the dynamic system. This forces the entire system be solved

with a very fine discretization of time, even though large portions of the system are not

affected by the fast mode.

In any case, the system of nonlinear algebraic equations must be solved. The two

classes of solvers most commonly used are variations of the Newton-Raphson Method and

several relaxation methods.

1.3.1 Newton-Raphson Method

The Newton-Raphson method works well for most systems as long as the initial

guess for all of the variables are within the convergence region of the final solution. This

method is used in SPICE and ASTAP and is based on a Taylor series expansion of the

system of equations:

The matrix is called the Jacobian Matrix and its inverse must exist for the

method to work.

Cẋ = f(x , y ,u )

0 = g (x , y ,u )

F(x) = 0 = F(xk) + J(xk)∆k +…

xk +1 = xk +∆k

∆k = −J
−1(xk)F(xk)

J
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1.3.2 Relaxation

Relaxation methods assign one of the system variables to each of the system

equations. After initial guesses are made for each of the variables, the variables are

updated by solving their corresponding equation assuming none of the other variables have

changed. The two most popular relaxation methods are the Gauss-Jacobi (popular with

parallel processing computers) and the Gauss-Seidel method (usually used with serial

processing computers). The Gauss-Jacobia calculates updates for all the system variables

before actually performing the update:

The Gauss-Seidel method updates the system variables as the updates are calculated:

1.3.3 Waveform Relaxation

An alternate method to solving the dynamic equations system wide is to solve them

equation by equation over a given time interval. The Waveform Relaxation method

represents variables by a sequence of points representing the time history of the waveform

over a given time interval. Each variable can be discretized differently and is assigned one

of the system equations. The system equations are solved over the waveform interval for

their assigned variable with the other variables held at their current waveform values.

Waveform Relaxation works well with loosely or directionally coupled systems, but

does not work well for tightly coupled systems. The method does however, have good

multirate performance since each differential equation can be solved using a time

increment appropriate to it.

1.3.4 WAVESIM Approach

To summarize the traditional solving methods, the standard methods employing

Netwon-Raphson can handle tightly coupled systems but perform poorly with multirate

systems while waveform relaxation performs poorly with tightly coupled systems but

F(x) = 0

Fi([x1,k,x2,k,…,xi ,k +1,…,xn −1,k,xn −1,k]
T) = 0

F(x) = 0

Fi([x1,k +1,x2,k +1,…,xi ,k +1,…,xn −1,k,xn −1,k]
T) = 0
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efficiently solves multirate problems. Unfortunately, the shipboard systems have both

multirate and tightly coupled properties. For this reason, WAVESIM combines the

Newton-Raphson method with a waveform representation of variables.

In WAVESIM variables are represented over a time interval by a vector of

coefficients along with a type indicator for specifying how the coefficients should be

interpreted. Common interpretations include Legendre Series coefficients, Chebyshev

Series coefficients, and polynomial series coefficients. For these representations,

integration and differentiation are linear matrix operations and the issue of numerical

stability of an integration technique disappears. Waveforms can usually be converted

from one type to another with a linear matrix operation as well.

With variables represented as vectors of coefficients, the Newton-Raphson method

can be employed for solving tightly coupled systems. Good multirate performance is

achieved through the linear matrix operator for integration along with waveform

smoothing to average out phenomena faster than the time scale of interest.

1.4 Thesis Outline

This thesis focuses on developing a digital computer simulation environment suitable

for studying shipboard electric power systems. WAVESIM, a simulation program written

in the C programming language demonstrates algorithms for simulating systems of

nonlinear lumped parameter models representing the electro-mechanical components

composing an IED system. The key features of WAVESIM are:

Devices defined independent of the encompassing systems

Devices can be developed and tested without an exact knowledge of the

topology of the systems incorporating the devices.

Devices described using the Terminal Representation of devices

Device constitutive relationships are written in terms of the actual values of the

terminal potentials and not in terms of relative potentials. In this manner, device

equations can be written in terms of a system reference when such a reference level is

unambiguous. Furthermore, the flow variables are not required to be conserved on a

device level. This greatly eases the task of modelling flows which also depend on a

reference potential (power for example).
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Devices defined independent of the manner in which terminal interface variables

are expressed.

Devices can be developed without specifying how the interface variables are

specified. In WAVESIM, variables can be represented many different ways, all of

which are irrelevant to the specification of the constitutive equations making up the

device.

System equations instead of the devices resolve input-output conflicts.

WAVESIM does not constrain normal terminals where energy is transferred

from having more than one output hooked together at a node.

Interface Variables represented by waveforms

Waveforms are a vector of coefficients which specify a given variable over a

given time interval instead of a single value describing the variable at a given point in

time. The waveform type determines how the coefficients should be interpreted for

generating values of the variable within the time interval. Representing variables as

waveforms has the primary benefit of removing the issue of numerical stability of

integration techniques from the simulation. Integration and differentiation are merely

operators on waveforms, no different from addition, subtraction, or any of the

trigonometric operators.

Differentiation and Integration performed on the device level instead of the

system level.

Most circuit simulators as described in the previous sections solve the

differential equations associated with device constitutive equations on a system level.

This method eases the task of evaluating the stability of linear systems but introduces

new problems. If the eigenvalues of a dynamic system are widely separated in value,

the simulation time step must be made very small for the entire system if conventional

integration techniques are employed. WAVESIM solves the differential equations on

the device level and employs waveform smoothing to remove dynamics which occur

faster than the time scale of interest.

While many of the pieces of WAVESIM are not new, several key concepts are

presented in this thesis for the first time:

The Terminal Description of devices

Instead of specifying the interface of devices by ports consisting of a potential

difference (branch voltage) and the flow through the potential difference (branch
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current), the terminal description of a device assigns a potential and a flow entering

the device for each normal terminal. Simulators based on branch voltages and

currents require all of the flow entering a device to also leave the device. In this

sense, the flow is conserved. The terminal description however, does not require

conservation of flow within a device (Conservation of flow as expressed by

Kirchhoff’s Current Law - KCL is required at connection points called nodes). The

ability to construct models which do not conserve flows can simplify models where

energy transformations occur, the reference potential is clearly known for the system

and not just for the device, and certain forms of energy are not of interest. In many

mechanical simulations for example, the amount of energy lost in friction is not of

interest to the modeler. A simulation model based on branch potentials and flows of a

device experiencing friction would be required to reject the frictional heat through one

of its branches.

The terminal description also allows for the transfer of information between

devices through information nodes and information terminals. This feature is

essential for successfully modelling many control algorithms. The ability to mix

control signals and energy transfer through flow variables within the same simulation

environment is a major advantage of the terminal description.

The Structural Jacobian method for building and reducing systems

The concept of the connection matrix for specifying the participation of system

variables in system equations is expanded to include the structural form (i.e. diagonal,

linear, nonlinear, etc.) of the dependence of the system equations on the system

variables. The codes for the structural Jacobian adhere to a simple set of algebraic

rules which can be used to construct a system structural Jacobian matrix from the

individual device structural Jacobians. The system structural Jacobian facilitates the

reduction of the numerical effort required to solve the system by identifying and

characterizing a set of smaller blocks which when sequentially solved, determine all

of the system variables. The system structural Jacobian can also be used to detect

unconnected systems and indicate possible potential reference problems.

The Systematic Treatment of Waveforms as an abstract data type

WAVESIM departs from the conventional paradigm of representing variables in

a dynamic simulation by a series of discrete points in time with a new paradigm based

on representing variables as a sequence of waveform intervals. Within each

waveform interval, the value of the waveform can be directly determined for any time
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based on a vector of coefficients, a waveform type indicator for specifying how the

vector of coefficients should be interpreted, and the time boundaries of the waveform

interval. Devices are defined independent of the waveform type of the terminal

variables. The principle advantage of using waveforms is that integration and

differentiation are simple operators. The integral of a waveform is just another

waveform. Simulation time steps are no longer controlled by the requirement for

numerical stability of the integration technique. Instead, series truncation error

control becomes the primary concern of the simulation environment. The ability to

use arbitrary waveform types and convert between types allows the modeler to use the

most appropriate waveform representation for the modeling problem.

This thesis is composed of six chapters including this introduction. Chapter Two

describes in some detail the specific properties of current shipboard electric power systems

and proposed integrated electric drive systems. Chapter Three provides a framework of

theory for developing the simulation environment WAVESIM and is broken into five

subsections. The first subsection details the Terminal Description method for modelling

devices. The second subsection demonstrates how to interconnect device models into

systems, construct the system structural Jacobian, and generate a sequence of blocks for

solving the system equations. The third subsection covers the treatment of waveforms as an

abstract data type. Solving the system of equations employing waveforms is detailed in the

fourth subsection. The fifth and final subsection of the third chapter covers modelling

techniques and considerations not covered in previous sections. The actual WAVESIM

implementation of the concepts developed in the third chapter are described in the fourth

chapter. The fifth chapter presents results of several simulations conducted with

WAVESIM. The final chapter provides an assessment of the work presented here as well as

possible future developments.

The appendices support the main chapters. Appendix A is a glossary of terms used

through out this thesis. Appendix B details some possible problems with using continuation

parameters. Appendices C and D are Load Flow examples of the terminal description

method. Appendix E provides examples of waveform types and a number of operators for

them. Appendix F presents a number of models useful for conducting shipboard power

system simulations. Finally, Appendix G details the program files making up WAVESIM.

This thesis introduces a number of new terms. To assist the reader, the first occurance

of a new term is indicated by the distinctive Helvetica typeface. MATLAB variable names

and sample sections of C programs are printed in Courier.
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Chapter 2 Shipboard Electric Systems

2.1 Typical Shipboard Electric Distribution System

The electric power systems onboard naval warships differ considerably from the

integrated power utilities found in developed countries. The differences arise from the

small size of the shipboard systems and contrasting standards for optimization. Shipboard

systems are optimized for survivability and minimization of weight and volume. Power

utilities on the other hand optimize for reliability and minimization of cost. The unique

characteristics of the shipboard systems result in markedly different design requirements

and standards as compared to power utilities.

Frigates, destroyers and cruisers are relatively small warships with corresponding

small electric power systems. Frigates normally displace from 2000 to 4000 long tons

(1 long ton = 2240 lbs) and have a primary mission of escorting merchant convoys. In the

U.S. Navy, frigates have only one propulsion shaft and about half the armament of a

destroyer. Destroyers displace from 4000 to 7500 long tons and are designed as escorts for

aircraft carrier battle groups. Cruisers are larger than destroyers, displacing from 6000 to

16000 long tons, carry more weapons, and are used to provide aircraft carrier battle groups

with integrated anti-aircraft and anti-cruise missile defenses. U.S. Navy cruisers and

destroyers all have two propulsion shafts.

The installed electric plant capacity for U.S. warships has varied from 3000 KW to

4500 KW per propulsion shaft over the past twenty years. Generally, the newer ships have

more installed capacity. Figure 2.1-1 shows the electric plant characteristics for the major

classes of conventionally fueled frigates, destroyers and cruisers constructed in the past

twenty years. All the listed ships with the exception of the Knox class frigates use

mechanically coupled gas turbine propulsion. The Knox class frigate is the last class of

conventionally fueled warships to use 1200 psi steam for main propulsion. (All nuclear

powered ships use 600 psi steam). Most of the Knox class frigates are presently being

transferred to the reserve forces or being decommissioned.
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Figure 2.1-1 U.S. Navy Ship Characteristics

Ship Class (Nbr) Name KW Generator Type Year

FF-1052 Frigate Knox 4 × 750 KW 3 Steam Turbine 1969
(46) 1 Diesel

FFG-7 Frigate Oliver Hazard 4 × 1000 4 Diesel 1977
(51) Perry KW

DD-963 Destroyer Spruance 3 × 2000 3 Gas Turbine 1975
(31) KW

DDG-993 Destroyer Kidd 3 × 2000 3 Gas Turbine 1981
(4) KW

DDG-51 Destroyer Arleigh Burke 3 × 3000 3 Gas Turbine 1991
(1 + 28) KW

CG-47 Cruiser Ticonderoga 3 × 2500 3 Gas Turbine 1983
(19 + 8) "Aegis" KW

Figure 2.1-2 Shipboard Electric Distribution System
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Figure 2.1-2 shows a typical ring bus architecture found on modern warships. The

small size of the shipboard system results in many differences with respect to commercial

systems. As a consequence the analysis of the shipboard plant requires recognition of these

differences:

1. Power Quality requirements relaxed relative to commercial

standards. Constant frequency and voltage assumptions

can not be made. See section 2.2 for more details.

2. Very little Rotational Inertia require fast controls to

maintain frequency. Infinite bus assumption does not hold.

3. Transmission lines are very short and for the most studies,

can be ignored.

4. No scheduling of real or reactive power. All generators

are loaded in equal proportion to their rating.

Load Flow solution has little meaning.

5. Load sharing information communicated to all online generators.

6. Large loads (relative to the size of generation plant) present.

Start up transients (load dynamics) are important.

7. Power Electronic Switching loads are significant.

8. Load shedding strategies are minimal.

Figure 2.1-2 also indicates the requirement for a simulation environment to include

the ability to model more than just electric power phenomena. Modelling shipboard

systems also requires extensive representation of mechanical dynamics as well as energyless

information transfer between components. This requirement is significant in that simulation

packages for commercial power systems do not include this capability as an integral part of

the simulation environment design.

2.2 Shipboard Electric Plant Standards

The primary standards for designing a shipboard electric plant are contained in the

following references:

Department of Defense, Interface Standard for Shipboard Systems, Section 300A,
Electric Power, Alternating Current (Metric), MIL-STD-1399(NAVY), 13
October 1987.
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Department of the Navy, General Specifications for Ships of the United States Navy,
Section 300, General Requirements for Electric Plant, Naval Sea Systems
Command, 1987.

Department of the Navy, General Specifications for Ships of the United States Navy,
Section 320, General Requirements for Electric Power Distribution Systems,
Naval Sea Systems Command, 1987

The goal of electric power utilities is to provide a reliable source of high quality

electric power at minimum cost. Shipboard systems on the other hand are designed to

provide a survivable and continuous source of electricity. Quality and cost are secondary

issues. Figure 2.2-1 summarizes the minimum quality of power a shipboard system must

provide

Figure 2.2-1 clearly demonstrates the quality of power guaranteed onboard a warship

is considerably lower than the quality of service provided by power utilities. Figure 2.2-1

does not show however, how often the transient conditions occur. This information is

provided by MIL-STD-1399 and summarized in figure 2.2-2. A major ramification of the

low quality of power provided by the ship service electric system is that loads must be

designed to operate and survive wide ranges of voltage and frequency fluctuations. This is

one of the reasons why commercial equipment often can not be directly installed onboard

ships (Shock requirements are also a major factor). Sensitive loads must provide their own

filtering and protection circuitry. This militarization of equipment can add considerable

cost and complexity to warship design, outfitting and maintenance.
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Figure 2.2-1 : Shipboard Electric Power Quality Standards (MIL-STD-1399)

Frequency

Nominal 60 Hz
Tolerance ± 3 %

Modulation1 0.5 %
Transient Tolerance ± 4 %

Transient Recover Time 2 seconds
Worst Case Excursion ± 5.5 %

Voltage

Nominal 440/115 Volts
Tolerance of 3 Phase Ave ± 5 %
Tolerance of any 1 Phase ± 7 %
Line Voltage Unbalance2 3 %

Voltage Modulation 2 %
Transient Tolerance ± 16 %

Maximum Departure Voltage from ± 6 %
combination of 3 Phase Ave. and

Voltage Modulation
Worst Case Excursion ± 20 %

Recovery Time 2 Seconds
Voltage Spike3 2500 / 1000 Volts

Voltage Waveform

Max Total Harmonic Distortion4 3 %
Max Single Harmonic 2 %
Max Deviation Factor5 5 %

Emergency

Frequency Excursion -100 % to +12 %
Voltage Excursion -100 % to +35 %

Duration 2 Minutes

1 Modulation (percent) =  measured over a period of 1 to 10 seconds.

2 Line Voltage Unbalance is the difference between the largest line to line voltage and the
smallest line to line voltage divided by the nominal voltage.

3 A Voltage Spike is a voltage change of less than 1 ms duration.

4 Total Harmonic distortion is the ratio of the rms value of the residue (after elimination of
the fundamental) to the rms value of the fundamental.

5 Deviation Factor is the ratio of the maximum difference between corresponding ordinates
of the waveform and an equivalent sine wave to the magnitude of the equivalent sine wave.
The equivalent sine wave is defined as having the same frequency and rms voltage as the
wave being tested.

Emax −Emin

2Enominal
100
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Figure 2.2-2 Shipboard Electrical Reliability

Voltage Transients of 10% or less Several times an hour
Voltage Transients of 10% to 16% Several times a day
Voltage Spikes above 200 Volts About once every 3 hours

The basic reason for the low quality of power onboard ship is the lack of rotational

inertia in the power system. In the commercial sector, the inertia of all the generators in the

network add up to such a large number that no single fault can cause a frequency

disturbance system wide. Onboard ship however, generators are often operated

independently. Other than the inertia provided by motors, the only source of rotational

inertia is the one generator. Since the generators are not very large, sudden load changes

and faults can cause significant disturbances. Although speed governors and voltage

regulators have improved significantly in the past twenty years, there is presently no way to

prevent the transients from happening.

The frequency tolerance limits in the steady state are rarely ever approached in

modern warships. The rather loose tolerances allowed the use of droop governors to stably

share loads. The electric plant operator on older ships could increase the load on a

paralleled generator by increasing the base frequency set point on the mechanical speed

governor. Adjusting the system frequency without changing the load sharing ratios required

adjusting the base frequency set points on all the generator speed governors. On modern

warships, all the generators normally operate isosynchronously and perform load sharing by

transmitting load current information to Governor Control Units which provide feedback to

the isosynchronous governors.

2.3 Shipboard Electric Plant Design

In the commercial sector, the design of electric generation and transmission capacity

are done continuously. Ships on the other hand, have a finite life (typically thirty years) and

the expense of upgrading the capacity of the electric plant and distribution system once the

ship is built is usually prohibitive. In this sense, capacity expansion onboard ships is not

done. Instead, excess capacity is initially installed to account for projected growth in load.

The maximum load for a ship design is determined by tabulating every load in an

Electrical Load Summary and summing up the power requirements under different

operating conditions. The maximum projected load usually occurs when the ship is in battle

condition and the ambient temperature is low (Electric heaters are used in many areas of a

ship). To account for uncertainty in estimating loads, a 20 % margin is added to the
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maximum projected load. Another 20 % margin is added for capacity expansion

requirements. Ninety percent of the capacity of all but one of the installed generators must

meet or exceed the margined maximum projected load. The ninety percent requirement

allows for imprecise load sharing when at maximum load while the all but one requirement

accounts for taking one generator off line for maintenance.

Figure 2.3-1

Once the size of the electric plant is determined, there are a number of other

considerations that must be accounted for. GENSPECS6 require the system be ungrounded

and based on Split Plant Operation (Each generator operating independently) with the

capability for parallel operation. Electromagnetic Interference (EMI) and Electromagnetic

Pulse (EMP) requirements place further constraints on the electric plant design and are

detailed in MIL-STD-461 and MIL-STD-1310. Since warships are designed for combat,

they must also be capable of surviving severe mechanical shocks from exploding ordnance.

The shock requirements are particularly important for electrical equipment such as circuit

breakers and generators. Specific requirements for shock are listed in MIL-STD-901.
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A number of loads onboard a ship are very important for survival of the ship and crew

during combat and emergencies. These loads are designated vital loads and must be

provided with primary and alternate sources of power. Some of the vital loads have

automatic bus transfer switches (ABT) which switch to the alternate source automatically

on loss of the primary source. Others use manual bus transfer switches (MBT). Examples

of vital loads include:

Collective Protection System Class W ABT
Ventilation

Emergency Communications MBT
Emergency Lighting ABT
Fire Pumps ABT
AFFF Pumps ABT
Interior Communications ABT
Machinery Space Circle W Ventilation MBT
Steering Gear Auxiliaries ABT
Surface Search Radar MBT
VHF Bridge-to-Bridge Radio MBT
Vital Propulsion Auxiliaries MBT and ABT
Auxiliaries to support generator prime MBT

movers

From a naval architectural viewpoint, the placement of electric generators requires a

number of compromises. Placing the heavy generators as low as possible is beneficial for

hydrostatic stability purposes. The lower the generator however, the more volume is

required for intake and exhaust ducting. Gas turbine generators are lighter than diesel

generators, but require greater volumes of air. Furthermore, design requirements exist for

separating 50 % of the installed capacity by two watertight bulkheads and installing a

minimum of three generators. Generally, weight can be minimized by using the smallest

number of generators (three). However, if four generators are used, the generators can be

located in two machinery spaces instead of three. By using only one set of intake and

exhaust ducts, volume for ductwork can also be reduced. Since most recent ships have had

weight constraints placed on them by Congress, the minimum number of generators have

been used.7

7 A very simple cost model for warships assigns a cost per ton of different components of a
ship.  With this in mind Congress has in the past placed constraints on the weight of ships in
order to keep costs down.
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Enclaving is a concept for arranging ships which involves locating all the equipment

required for a given combat system within the same general area of the ship. If a ship is

completely divided into a number of enclaves, one enclave can be damaged by enemy

ordnance while the others remain functional and capable of continuing the engagement. To

work properly, this concept requires the enclaving of sources of distributed services (such as

electricity, cooling water, fire fighting water and dry air). Presently, enclaving has not been

incorporated in any warship design but its use has been proposed for a number of new

designs8. If enclaves are ever used, they will have a significant impact on the type, size,

number, and location of electric generators. In some enclaves it may not even be possible to

locate a conventional generator. Alternate generating or storage devices such as fuel cells

or batteries may be used.

2.4 Integrated Electric Drive

Most modern warships mechanically couple the main propulsion prime movers with

the propeller shaft. The mechanical power train is very efficient but imposes constraints on

machinery arrangement and adversely impacts survivability. The prime mover is usually

very heavy and must be located near the center of the ship to prevent excess trim. Shafting

must therefore penetrate a number of watertight boundaries and maintain precise alignment

over a great distance. The long length and precision requirements of the shafting make it

very vulnerable to weapon induced damage. While electric propulsion eliminates many of

the survivability and arrangement constraints of the mechanical system, the propulsion

system must be carefully designed to ensure overall plant efficiency is not degraded by the

extra power conversion losses in converting to and from electric power. Designed properly,

an electric drive system can achieve the survivability and arrangeability benefits without

suffering from a lower propulsion plant efficiency.

Integrated electric drive interconnects the generation of power for propulsion with the

generation of ship service electric power. The propulsion plant for U.S. warships typically

averages between 30 and 37.5 MW per shaft. The capacity is sized to provide enough

power to propel the ship at a desired maximum speed. Most ships however, do not operate

for extended periods of time at maximum speed. Operating at half maximum speed requires

only about 20 percent of the installed power and quarter maximum speed requires only 2 or

8 Enclaving requires a greater redundancy of equipment which results in the ship becoming
larger and more expensive.  Since most ship designs are cost constrained, enclaving
provisions are often deleted to reduce the per unit price of the warships.
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3 percent. Thus a 28 knot frigate with a 30 MW plant could go 7 knots using less than 1

MW of power and 14 knots with about 6 MW of power. If the propulsion plant consists of

two 15 MW generators, one generator could easily supply all the required power for both

propulsion and ship service at the normal operating speeds of 12 to 15 knots. This has the

potential of reducing the fuel consumption of warships under normal operating conditions

by improving the overall efficiency of the power plant even though the efficiency of the

power transmission system is lower. By careful selection of generator number and size, one

can tune the overall efficiency of a plant for optimization at several different speeds. In the

U.S. Navy, optimizing plant efficiency for 20 knots is beneficial since this is the speed used

to calculate the amount of fuel carried by the ship.9

In a typical integrated electric drive scheme, the propulsion prime movers are

connected to both a propulsion generator and to a ship service generator (PDSS or

Propulsion Derived Ship Service). The speed of the generator is set to optimize efficiency

of the prime mover at the given power loading. Consequently, cycloconverters are used to

convert the power to either 60 Hz for ship service, or to whatever frequency the propulsion

motors require. Usually, an additional diesel or gas turbine ship service generator is

included to provide power in port or during emergencies. Figure 2.4-1 shows a typical

PDSS design for a two shaft frigate sized ship.

Figure 2.4-1 emphasizes the need to model mechanical dynamics and control

information signals. The control signals can couple the dynamics of different devices

within the system and must therefore be carefully modelled. The control signals can also

destroy such properties as diagonal dominance which makes analysis of commercial power

systems much easier.

One of the features of an electric drive system which may be exploited in the future is

the ability to divert all of the propulsion power capacity from propulsion to some sort of

high power combat system. Weapons such as rail guns and high energy lasers may become

possible. These types of weapons would be safer for the ship since the requirement to store

large amounts of chemical explosives for propellent charges would be reduced. Energy to

move projectiles would be stored in the form of relatively inert fuel oil instead of highly

9 Most other navies use 18 knots which allows for combined plants such as CODOG where a
diesel engine is used for cruising and a gas turbine for high speed.  Unfortunately, the size
requirement for a diesel capable of propelling a ship at 20 knots is prohibitive and results in
U.S. warships only using gas turbines and carrying much more fuel.
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Figure 2.4-1 Integrated Electric Drive
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explosive chemical propellents. Switching large amounts of electric power onboard ships

presents a number of technical challenges both in the design of physical equipment and also

in attempts to accurately simulate the phenomena. The effect of pulse loads on the electric

system is not a trivial simulation problem.
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Chapter 3 Framework

Conducting time domain simulations of systems of nonlinear lumped parameter models

characterizing shipboard electric power systems requires an organized approach to

developing device models as well as network equations. The major contribution of this

thesis is the development of a simulation environment having the following properties:

1. An object oriented approach to developing the mathematical description of devices

independent of the manner in which the variables are represented.

2. An organized method for generating system equations for interconnecting device

models into subsystems and systems.

3. An algorithm for solving the system equations and variables by identifying smaller

blocks of equations and variables which can be sequentially solved. The

algorithm develops the concept of the device structural jacobian matrix and the

system structural jacobian matrix.

4. The ability to use a wide range of methods to describe variable waveforms. In

particular, describing waveforms through vectors of coefficients of polynomial

series, orthogonal function series, and data series are stressed.

5. The ability to solve the system of equations by employing either the

Newton-Raphson Method or Waveform Relaxation. The Newton-Raphson

method is modified to improve convergence properties through the use of

continuation methods.

This chapter is organized into five parts. The first part defines the device which is the

fundamental building block of the system simulation. The second part shows how to

interconnect several device models into systems and subsystems. The third part defines the

waveform as a vector of coefficients to approximate waveforms over time intervals. The

fourth part details the actual procedure for conducting a simulation. The fifth and final part

details some finer points which should be considered when constructing models.
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3.1 Device Description

A Device Description is an organized manner for describing the characteristics of

a physical component. This description includes definitions of variables which interface

with other components in a system, variables called states which allow for information

storage, and constitutive relations describing the device behavior.

3.1.1 Interface Variables

The interface variables are defined as either potential variables or flow

variables depending on their interaction with the interface variables of other devices

within a system or subsystem. Systems and subsystems are constructed by grouping

the interface variables of one or more devices into sets called nodes and applying

network equations determined by the types of variables attached to the nodes.

All potential variables attached to a node are equated to a potential value

associated with the node. Physical quantities which can be classified as potentials include

voltages, signal levels, rotational speeds, deflections, and pressures. All potentials are

referenced to 0. All potential variables connected to the same node must be defined with

respect to the same system wide reference level. In other words, 0 must mean the same

thing for all of the potentials attached to a given node.

The sum of all flow variables attached to a node is equated to zero. Physical

quantities analogous to flow variables include currents, power flows, torques, forces and

mass flow rates.

3.1.2 Terminals

Terminals provide a mechanism for organizing the interface variables of a device.

In general, there are two types of terminals: Normal Terminals and Information

Terminals.

A normal terminal has associated with it a flow variable and a potential variable.

Its electrical analog is one of the wiring terminals on an electrical device. A mechanical

analog is the rotating shaft coupling of a gearbox. The equations for exchanging energy

between devices can be generated through the list of normal terminals connected together

at a given node.
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An information terminal has associated with it only a potential variable. The

potential variable is used to convey knowledge between devices without transferring

energy. Set points, meter readings, and control signals are all examples of energyless data

which can be conveyed through information terminals.

All normal terminals have an associated KCL Group number. A KCL group is the

smallest subset of a device’s terminals such that the sum of the flow variables within the

subset is identically zero for at least one of the possible dynamic configurations of the

device. Normal terminals which can not be associated with a KCL group are given a group

number of 0. The remaining terminals are assigned the group number of their parent KCL

group.

The KCL Group number is used to detect possible reference frame problems within a

simulation network. A given electrical circuit problem for example, must have at least one

normal terminal with a 0 group node within a given independent system to ensure the set

of system KCL equations is not singular. Normally this terminal is associated with a one

terminal device with an export potential and import flow which is used to specify the value

of a given reference node potential. This Reference Frame Check is discussed in greater

detail in section 3.2.4.

Some devices may have variable numbers of KCL Groups depending on the

operating point of the device. A simple model of a two terminal switch for example,

would have 1 KCL group when the switch is closed (the sum of the currents entering the

switch is identically zero) and 2 KCL groups when the switch is open (both flow variables

are identically zero). For the purpose of defining the device, the worst case in terms of

creating singular systems should be used. In the switch example, each terminal should

have their own KCL group number for a total of two KCL groups.

3.1.3 Variable Direction: Import and Export Variables

The Interface variables can further be classified by whether they are a resource

(Import) or product (Export) of the device description. A device description can be

considered a means for generating export variables based on the values of the import

variables, states, parameters, continuation parameter, and time.

An import variable is taken as input by the device description. An import variable

can be any interface variable associated with either normal or information terminals. To
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ensure a consistent set of equations when several devices are connected together in a

system, the total number of import variables associated with normal terminals must equal

the number of normal terminals

An export variable is explicitly defined and considered a product of the device

description. An export variable can be any interface variable associated with either normal

or information terminals. To ensure a consistent set of equations when several devices are

connected together in a system, the total number of export variables associated with

normal terminals must equal the number of normal terminals.

3.1.4 States

States are variables whose values are stored for a given time for later use. States

can be used for example, to store the constant of integration for a dynamic equation. States

can also be used to store the operating mode for a given device. In general, if the value of

a given variable depends on the previous value of another variable, that other variable is a

state.

3.1.5 Parameters

Parameters are constants which specify characteristics of the device or in other

words, customizes a given device description to represent a given physical device. A

model of a resistor for example, includes a parameter for resistance. This precludes the

requirement to develop a model for every resistor value. We only need construct a generic

resistor model instead of a 10K resistor model, a 22K resistor model, etc.

3.1.6 Constitutive Equations

The constitutive equations are a consistent set of equations for specifying the

values of the states and export variables. In general, the number of constitutive equations

needed is equal to the number of normal terminals plus the number of export variables

associated with information terminals. The total number of import variables associated

with normal terminals and the total number of export variables associated with normal

terminals must independently equal the number of normal terminals. There is no

constraint on the number of import variables associated with information terminals.
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3.1.7 Device Jacobian Matrices

A Device Jacobian Matrix provides the sensitivities (partial derivatives) of the

export variables with respect to the import variables. This implies there is a given

ordering of both the import XI and export XE variables:
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The Device Jacobian Matrix is used to generate a consistent set of import variables

which simultaneously satisfy the device constitutive equations along with constraints

imposed by the connections of terminals to nodes. From the device point of view however,

the Jacobian matrix is merely a product that must be computed.

Up to this point, we have not discussed the manner in which the variables are

described. If the variables are represented by real numbers, then each element of the

Jacobian is also a real number. If instead the variables are represented by vectors, then the

Jacobian elements will be matrices.

3.1.8 Device Structural Jacobian Matrix

The Device Structural Jacobian Matrix describes the properties of the elements

of the device Jacobian matrix for a given type of variable representation without actually

providing any values. The following codes can be used to describe the properties of the

matrix elements of the device Jacobian matrix:

Code Type of Matrix

0 Zero Matrix (all elements are always zero)

I Identity Matrix (always the identity matrix)

D Diagonal Matrix (always a linear main diagonal matrix)

L Linear Matrix (The elements are always constant)

A Nonlinear AC Matrix (see Note 3.1.8-1)

N Nonlinear Matrix (The elements may not be constants)

U Unknown (The dependence is unknown (treat as nonlinear))

Note 3.1.8-1: An AC Matrix is one for which the constant component of the export
variable depends only on the constant component of the import variable. The other
components of the export variable can not depend on the constant component of the
import variable but are not restricted in any other way.

The device structural Jacobian matrix is useful in developing the algorithm for

generating a consistent set of import variables without having to deal directly with the

potentially much larger device Jacobian matrices. If an iterative solution scheme is used to
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develop the consistent set of import variables, the device structural Jacobian matrix

indicates directly which matrix elements must be recalculated for each iteration. (Only the

nonlinear and unknown elements have values which change between iterations)

3.1.9 Continuation Parameter

A system containing one or more nonlinear devices may be difficult to solve with an

iterative method. The region of convergence around the solution may be so small as to

make the probability of success for choosing a starting point for the iterative scheme

almost zero. One method for enlarging the region of convergence is through the use of a

continuation parameter which varies from 0 to 1. When the continuation parameter

has value 1, the export variables are developed using the normal nonlinear constitutive

equations. When the continuation parameter has value 0 however, the export variables are

developed using a linear set of constitutive equations. As the continuation parameter

increases from 0 to 1, the export variables traverse a continuous path from the linear

solution to the nonlinear solution. One common method for generating such a dependence

on a continuation parameter α is:

where Fn(X) is the nonlinear function for generating the export variables, Fl(X) is the

linear function approximation, and is the function for determining the export

variables for intermediate values of α. Section 3.4.2 describes in detail continuation

parameters in relation to the Newton-Raphson method.

3.1.10 Discontinuity Time Prediction

If the variables are described as a waveform over a given time interval [t0,t1]

knowledge of the time of discontinuities can prove useful to the algorithm which generates

the consistent set of import variables. The accuracy of a vector description of a waveform

often deteriorates greatly if there is a discontinuity during the time interval. Varying t1

such that it falls on a discontinuity will often improve the accuracy of the waveform

representation. For this reason, each device has the opportunity to recommend a

recalculation time for the current interval. Normally, the system would use the minimum

recommended recalculation time offered by any of the devices to recompute the time

interval.

F(X , α) = αFn(X) + (1 − α)Fl(X)

F(X , α)
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3.2 Network Description

A network is composed of a system of devices and subsystems whose terminals

are interconnected at nodes. The network is a closed system having no terminals defined

for any of its nodes. A subsystem is a system having terminals defined for at least one of

its nodes and therefore can not be solved independently of other devices or subsystems.

3.2.1 Nodes

A node connects together one or more terminals from one or more devices. The

nodal connections are the means by which devices are combined to form systems (both

networks and subsystems). The nodes provide the association of device import and export

variables with system variables through nodal equations. Each node is assigned a

serial number for identifying it from the other nodes. There are two types of Nodes:

Normal Nodes and Information Nodes.

3.2.1.1 Normal Nodes

A Normal Node has at least one normal terminal attached to it. Information

terminals can be associated with the node as long as none of the information terminal

potentials are defined as an export variable. A normal node has associated with it a node

potential as well as a Kirchhoff Current Law (KCL) equation. The number of normal

nodes is designated by nn.

In a subsystem, a normal node can also have associated with it a terminal for

connecting with other subsystems and devices. This terminal can be either a normal

terminal having an associated terminal potential and flow variable or an information

terminal having only an export potential. (import and export refer here to the direction

relative to the defining subsystem which is opposite to the normal definition which is

relative to the components of the subsystem). The total number of normal node normal

terminals defined for a subsystem is designated nntn. For any given subystem the number

of normal node terminal export variables and import variables must both independently

equal nntn. The total number of normal node information terminals is designated nnti.

3.2.1.2 Information Nodes

An Information Node has only information terminals attached to it. Furthermore,

one and only one of the terminal potential variables must be an export variable. Only a

node potential is associated with an information node. Information nodes work in the
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same manner as hooking up stereo componenents: you can hook up as many inputs

(import variables) as you want to any given output (export variable), but should never

hook up two or more outputs together. The number of information nodes is designated by

ni.

As an option for subsystems, an information node can have associated with it an

information terminal for connecting with other subsystems. Since the meanings of import

and export are once again reversed for this terminal, no other export potentials from other

devices or subsystems may be attached to the node if the information terminal potential is

an import variable. If the information terminal potential is an export variable, exactly one

other export potential from other devices or subsystems may be attached to the node. The

total number of information node information terminals is designated niti.

3.2.2 System Variables

System variables comprise the minimum set of variables from which all of the

device import and export variables can be derived from. The set of system variables is

composed of node potentials as well as all device import flow variables and normal node

normal terminal export flow variables. For a subsystem, the node terminal import

variables are assumed to be provided by the encompassing system or subsystem and are

not considered system variables.

3.2.2.1 Node Potentials

All of the node potentials of the normal and information nodes are system variables

which must be solved for. Hence there are a total of np = nn + ni node potentials.

3.2.2.2 System Flow Variables

All of the Import Flow Variables of the various devices making up the system as

well as the export flow variables of the normal node terminals are system variables. The

number of system flow variables is designated by nf.

3.2.3 System Equations

3.2.3.1 Kirchhoff Current Law Equations

Kirchhoff’s current law states the sum of the flow variables entering a node is equal

to zero. For a given normal node or normal terminal node, this law is expressed by
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generating a list of the terminals of the various devices and subsystems attached to the

node. The number of Kirchhoff Current Law equations is equal to the number of normal

nodes nn.

where

fj() KCL Equation for node j (Should Equal Zero)

nt Number of normal terminals attached to node

Iji Flow Variable associated with ith normal terminal attached to node j

3.2.3.2 Potential Difference Equations

A Potential Difference Equation is created for each of the export potential

variables of the various devices and other subsystems and for each of the import potential

variables of the node terminals. This equation merely states the difference between the

node potential and the potential variable is zero. This equation is expressed by

generating a list of the terminals of the various devices and subsystems attached to the

node having an export potential variable. Since one and only one export information

potential can be assigned to an information node and can never be attached to a normal

node, the number of potential equations due to export information potentials is simply ni.

The requirement for a device to have equal number of import and export variables

associated with normal terminals forces the number of export normal potentials to be nf.

Hence the total number of potential equations is nv = ni + nf.

where

fji() Potential Difference Equation for node j export potential variable i

(Should Equal Zero)

Vj Node j Potential

Vji ith export potential variable associated with node j.

fj() = ∑
i = 1

nt

Iji = 0

fji() = Vj −Vji = 0

- 52 -



3.2.3.3 Rmin and Gmin

One method for preventing linear dependences among the system equations is to

modify the equations to include an extra term corresponding to either a small conductance

Gmin to the ground potential for KCL equations or a small series resistance Rmin for the

potential difference equations. The KCL equation is now given by:

The potential difference equation is similarly modified:

The goal in using Gmin and Rmin is to reduce the condition number of the system

Jacobian matrix to the point where the system can reliably be solved (A singular

matrix has an infinite condition number). Gmin and Rmin can also add fictitious dynamics

to the system and thereby lead the simulation to produce incorrect results. Hence if used,

Gmin and Rmin should be large enough to bring the condition number down to a reasonable

level, but small enough to prevent their inclusion from having appreciable effect on the

simulation results.

In general, the use of Gmin and Rmin should be avoided for these reasons:

1. Gmin and Rmin are fictitious elements. If either is significant, they should be

explicitly included as a device.

2. The indiscriminite use of Gmin and Rmin adds to the complexity of the system

and decreases the degree to which the system can be reduced into smaller blocks.

In other words the inclusion of Gmin and Rmin may greatly increase the computation

time.

Gmin and Rmin are included in WAVESIM for these reasons

1. Gmin and Rmin can be selectively specified for individual nodes. If a simulation

fails to converge for one reason or another, Gmin and Rmin can be employed to find

the part of the system experiencing difficulties. Gmin and Rmin are excellent

debugging tools.

fj() =GminVj + ∑
i = 1

nt

Iji = 0

fji() = Vj −Vji −RminIji = 0
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2. Since Gmin effectively connects the node to the ground potential, Gmin can be

used to ensure all of the nodes have the same potential reference and ensure there

are no linear dependent KCL equations.
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3.2.4 Reference Frame Testing

If a given set of a system’s normal nodes can be found such that all terminals

attached to any of its nodes have nonzero KCL groups and such that if a terminal is

attached to one of the set’s nodes, then all of remaining terminals of the parent KCL group

are also attached to one of the nodes of the set, then there exists the possibility of a singular

system due to the linear dependence of the KCL equations for the set of normal nodes.

If Gmin is non-zero for a node, it should be considered a terminal with a 0 KCL

Group. If Gmin is zero, it should be ignored.

Testing for a possible singular system can be accomplished with the following

algorithm:

1. Set all the normal node circuit_group_indicators to 0.

Set the circuit_group_counter to 0

Set the circuit_group_singular_flag to 0

2. Start with the first normal node having a 0 circuit_group_indicator

If none can be found then algorithm is complete.

Increment circuit_group_counter.

3. Change the circuit_group_indicator of the node to the

circuit_group_counter.

4. For each terminal attached to the node:

4a. If the KCL group number is zero, set the

circuit_group_singular_flag to 1.

4b. If the KCL group number is nonzero, loop through each normal

terminal of the device. If the terminal belongs to the same

KCL group and the node the terminal is attached to has a

0 circuit_group_indicator, then set the node

circuit_group_indicator to the negative

of the circuit_group_counter.

5. Search all of the nodes for a negative circuit_group_indicator

If none can be found and the circuit_group_singular_flag is zero

Warn user that a singular system may exist with the group nodes.

If none can be found then go to step 2

If one is found, then go to step 3
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Setting a proper reference for each such set of system nodes can be accomplished by

attaching to one of the nodes a one terminal device having the following characteristics:

3.2.4.1 Reference Device

Interface Variables

Terminal Potential Variable Flow Variable (KCL Grp) Type

Ref V (export) I (import) (0) Normal

Parameters

VRef Reference Potential Level

Equations

V = VRef

Device Structural Jacobian

Device Jacobian

Notes

Most conventional circuit simulations define a reference node for which a potential

is defined and the KCL equation is not written. Adding this reference device to a node

effectively converts that node to a reference node in the usual senses. While it is true that

the KCL equation and an additional Potential Difference equation are still written for this

reference node, each is part of a one element block. The potential difference equation can

be solved before the simulation starts since it does not depend on any of the system

variables. The flow variable on the other hand, only appears in the KCL equation of the

one node and thus can be solved after all the other system variables have been found. In

fact, the flow variable should normally equal zero if the rest of the circuit is indeed

linearly dependent.

As a convenience to the user, WAVESIM automatically attaches a reference device

with Vref = 0 to the node with serial number 0 if that node is used.

JDS = [0]

JD = [0]
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3.2.5 System Reduction

The previous sections detail a method for generating a full set of system variables

and system equations. The total number of system variable equals nsf = nn + ni + nf which

also equals the number of system equations. For even a small system the algebraic order

nsf can become quite large. For this reason, elminating system variables and equations

through system reduction is desirable. The primary tool for performing system reduction

is the system structural Jacobian.

3.2.5.1 System Structural Jacobian

The System Structural Jacobian facilitates the reduction of the algebraic order

of the system by showing the nature of the dependence of system equations to each of the

system variables. The System Structural Jacobian is constructed by combining elements

of the device structural Jacobian matrices according to the arithmetic of structural

Jacobian elements. The types of elements in the system structural Jacobian is given by:

Code Type of Matrix

0 Zero Matrix (all elements are always zero)

I Identity Matrix (always the identity matrix)

D Diagonal Matrix (always a linear main diagonal matrix)

L Linear Matrix (The elements are always constant)

A Nonlinear AC Matrix (see Note 3.2.5.1-1)

N Nonlinear Matrix (The elements may not be constants)

U Unknown (The dependence is unknown (treat as nonlinear))

Note 3.2.5.1-1: An AC Matrix is one for which the constant component of the export

variable depends only on the constant component of the import variable. The other

components of the export variable can not depend on the constant component of the

import variable but are not restricted in any other way.

The addition and subtraction operators for the structural Jacobian elements is a

function of the manner in which the system variables are represented. For all of the

methods used in this thesis, the following definitions apply:
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I + I = D

I - I = 0

I ± 0 = I

-I ± 0 = D

-I - I = D

±n ± m = ±m ± n = n (n≥m, n≠I)

U > N > A > L > D > I > 0

Note, the Identity Code I, is not strictly necessary and if eliminated simplifies the

addition and subtraction operators to:

±n ± m = ±m ± n = n (n≥m)

Before the system structural jacobain can be constructed, the system variables and

equations must be ordered.  The first np variables are the node potentials of the normal

and information nodes arranged in the order of the node serial numbers.  The next nf

variables are the import flow variables ordered first by device then by device terminal.

The first nn equations conform to the Kirchhoff Current Law equations for the normal

nodes arranged in order of the node serial numbers.  The remaining nv equations are the

potential equations for the export potentials ordered first by the node serial number they

are attached to, then by the order of the devices attached to the node, and finally by the

order of the terminals in the device.

The system structural Jacobian is constructed in two parts after being initialized to

contain only 0. First, a Kirchhoff Current Law equation is generated for each normal

node. The normal terminals of the normal nodes are examined one at a time. If the flow

variable is an import variable, it is also a system variable and an I is added to the

corresponding element of the system Jacobian matrix. If the flow variable is an export

variable, its corresponding row of the device structural Jacobian matrix is extracted. The

columns of the device structural matrix row correspond to the device import variables.

All of the device import variables can be associated to either a node potential (one of the

first np columns of the system structural Jacobian) or to one of the remaining nf import

flow variable columns. Hence it is quite easy to locate to which column each element of

the device structural Jacobian row must be added. If Gmin is non-zero for the node, a D

code is added to the column corresponding to the node potential.

- 58 -



The remaining nv rows of the system structural Jacobian matrix are constructed by

examining each node one at a time. If the node has an export potential associated with it.

An I is added to the corresponding node potential column and potential equation row

element (unless of course the node is a reference node and does not have a column

associated with its potential). The row of the device structural Jacobian matrix

corresponding to the export potential is then extracted. In exactly the same manner as

described above for the export flow variables, the columns of the system structural

Jacobian matrix are correlated to the columns of the device structural Jacobian matrix.

Once correlated, the elements of the device structural Jacobian row are subtracted from

the appropriate elements of the system structural Jacobian matrix. If Rmin is non-zero for

the node and the terminal having the export potential has an import flow variable, then a

D is added to the column corresponding to the import flow flow variable. If Rmin is

non-zero for the node and the terminal having the export potential has an export flow

variable, then a D is multiplied by the elements of the corresponding row of the device

structural Jacobian matrix before being added to the corresponding column in the system

structural Jacobian matrix.

Once the structural Jacobian matrix has been constructed it can be examined to

ensure there are no glaring problems such as a row or column containing only 0 elements.

If a row or column contains only 0 elements, the system is ill-posed and can not be

solved.

3.2.5.2 Blocks

The primary reason for constructing the system structural Jacobian matrix is to

break down the system of equations and system variables into smaller blocks which can

be sequentially solved instead of solving the entire system at once. A block Bi is defined

as nbi system variables and nbi equations which only depend on system variables of the

present block and previous blocks in the sequence. A block of size nbi is identified by

finding nbi rows in the system structural Jacobian matrix that have not already been

allocated to a block and have exactly nbi columns containing non-0 elements. Of the

many combinations of blocks which can be found for a system, the best combination

contains the largest number of small blocks. Here is an algorithm for finding the blocks:

1. Create a list for each row containing the number of unallocated non-0 entries

in that row. (Initially all the rows and columns are unallocated)
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2. Examine the list for rows having only 1 unallocated non-0 entries. Create a

block for each of these rows and their associated columns. Mark the rows and

columns as allocated.

3. Update the list of unallocated non-0 entries in each row.

4. Continue steps 2 and 3 until no more single rows can be allocated.

5. Examine the list for two rows only having unallocated non-0 entries in the

same two columns. Create a block for each pair of rows and their associated

columns. Mark the rows and columns as allocated.

6. Update the list of unallocated non-0 entries in each row.

7. Repeat steps 2-6 until no more single row and double row blocks can be

identified.

8. Examine the list for three rows only having unallocated non-0 entries in the

same three columns. Create a block for each set of three rows and their

associated columns. Mark the rows and columns as allocated.

9. Update the list of unallocated non-0 entries in each row.

10. Repeat steps 2-9 until no more blocks of up to size 3 can be identified.

11. Continue the above algorithm until all of the rows and columns have been

allocated. Remember it is necessary to go back and attempt to identify

smaller sized blocks after discovering a larger block since the removal of a

column could allow the identification of a new smaller block.

The order of identifying blocks is very important because they must be solved in the

same order. Each block contains the same number of system variables and system

equations. The equations only depend on system variables determined from the present

and previous blocks. Hence the simulation problem becomes an issue of solving

sequences of relatively small systems of equations described by blocks.

3.2.6 Reduced System

The reduced system consists of the sequence of blocks which when solved, provide

the solution for all the system variables. Solving each of the blocks can be done a number

of ways. Most schemes start with an initial guess for the system variables and generate

corrections to the guesses until all of the system equations for that block are satisfied.
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Generating the corrections is normally done through the use of a block Jacobian matrix

which can be constructed in much the same manner as the system structural Jacobian. If

the block structural Jacobian does not contain any A, N or U elements, the block Jacobian

can be inverted and multiplied by the system equation errors to provide the required

corrections. If there are any nonlinearities, this scheme can be performed several times

until the system equation errors are close to zero. This method is commonly referred to as

the Newton-Raphson method and if the initial guess is close enough to the solution, the

method converges quadratically. This method is described in much more detail in section

3.4.1.

Relaxation techniques can also be used to calculate the system variables. Relaxation

techniques start with an initial guess for all of the system variables and update each

variable one at a time by solving a single system equation by assuming all of the other

variables are constant. Typically, one system equation is assigned the task of solving for a

particular system variable. With careful thought as to the assignment of variables to

equations, it is often possible for such a system to converge to a solution. Common

relaxation techniques are the Gauss-Seidel and Gauss-Jacobi methods.
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3.3 Waveforms

Up to this point, the development of the simulation structure has been independent of

the manner in which variables are actually described. The simplest and most commonly

used method for representing variables is through a single real number representing the

value of a variable at a specific time. For static simulations where the problem is to obtain

the steady state solution for the system, this method works very well. Appendix C and

Appendix D demonstrate this procedure for the classic load flow problems. For dynamic

simulations however, some knowledge as to the time history of the variables is needed to

calculate derivatives and integrals. A dynamic simulation is implemented as a series of

static simulations where the dynamics are represented by functions of the time increment

and state variables. The various integration techniques for this type of simulation differ

only in the interpolation scheme used to approximate the variables between successive static

simulations. The time increment between static simulations must be carefully controlled to

ensure the interpolation scheme has enough accuracy for numerical stability. Integration in

this manner requires careful control of the time increment to ensure the interpolation

scheme is accurate enough to ensure numerical stability along with an accurate solution.

Another approach to representing variables is the waveform. This method employs a

vector of coefficients to continuously describe the time domain value of the variable over

some time interval [t0 t1]. The type of the waveform determines how the coefficients are

interpreted to generate the time domain values. Possible types include Data Series, Fourier

Series, Legendre Series, Polynomial Series and Legendre Series. The principal advantages

of using waveforms over discrete points include:

1. Interpolation is not generally required to determine intermediate points. The

value of a variable can readably be determined for any time.

2. The numerical stability of Integration and Differentiation techniques do not

have to depend on the time step control since integration and differentiation

become waveform operators on an equal level to all other operators. Time step

control becomes only an issue of numerical accuracy and not of numerical

stability.

3. Certain operations may be easier to perform with one waveform type. The

ability to efficiently convert a waveform from one type to another type and

back again allows one to use the most efficient waveform type in the

calculations of a given operator.
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3.3.1 Waveform Definition

A waveform approximates the instantaneous value of a variable over some time

interval. The elements of information contained within a waveform must as a minimum

include:

1. The name of the waveform

2. The beginning and ending times of the interval (t0 t1)

3. An Array of Coefficients representing the waveform (ci)

4. The number of coefficients in the Coefficient Array (n)

5. A waveform type indicator.

The waveform type indicator identifies how the coefficients should be

interpreted when operations are performed on the waveform. Here is an example of a C

structure defining a Waveform:

typedef struct Waveform
{
char *name; /* character string of the name

of the variable */
double t0; /* time of the beginning of the interval */
double t1; /* time of the end of the interval */
void *c; /* array of coefficients */
long n; /* number of elements in the array */
long type; /* waveform type indicator */
long version; /* Version of this waveform */

struct Waveform *next; /* pointer for forward
linked lists */

struct Waveform *last; /* pointer for backwards
linked lists */

struct Jacobian *jnum; /* pointer to linked list of
jacobians where this waveform
is the numerator */

struct Jacobian *jden; /* pointer to linked list of
jacobians where this waveform
is the denominator */

}
WAVEFORM;

The above definition also includes the following optional information:

6. A Version Number to record a change in the waveform’s properties.

7. An Address Pointer to the waveform representing the previous time interval.

8. An Address Pointer to the waveform representing the following time interval.

9. An Address Pointer to a linked list of Jacobian Structures.
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The waveform address pointers allow one to construct a linked list of waveforms to

describe the time history of a variable over a number of time intervals. The Jacobian
structure as well as the version number will be described in section 3.3.3.

Note the waveform coefficients are declared to be of type void. This is done to allow

for the coefficients to be abstract data representations in themselves. Normally the

waveform coefficients would be double precision floating point numbers, but it should also

be possible to incorporate other types of data. It may be advantageous for example, to

represent the coefficients with complex numbers. In this case, each element in the

coefficient array would be a structure holding double precision floating point numbers

corresponding to the real and imaginary parts (Or magnitude and phase angle) of the

complex number.
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3.3.2 Waveform Operators

Waveform Operators are functions which act on waveform arguments to generate

new waveforms, or provide some information about the waveform arguments. The types

of functions can be broken down into several groups:

1. Arithmetic Operators

2. Trigonometric/Exponential Operators

3. Switching Operators

4. Integral/Differential Operators

5. Waveform Content

6. Special Functions

3.3.2.1 Arithmetic Operators

The arithmetic operators are the customary addition, subtraction, multiplication,

division, and assignment operators usually associated with floating point arithmetic. The

assignment operator is a bit more complex since it must incorporate waveform type and

number of coefficient conversions.

3.3.2.2 Trigonometric/Exponential Operators

The Trigonometric/Exponential operators include most of the transcendental

functions used in engineering. Examples include sine, cosine, tangent, logarithms,

exponentials, as well as the inverse functions. Error handling can become quite complex

since several of these operators may be undefined at one or more points within the

argument waveform. These operators are usually handled by converting the arguments to

a series of data points, performing the operation point by point, and then converting back

to the appropriate waveform type.

3.3.2.3 Switching Operators

Switching Operators are operators producing waveforms which themselves or one

of their derivatives are discontinuous. Examples include the absolute value function, the

sign function and the step function. The typical method for calculating these functions is
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to determine the discontinuity points and use integration to create a characteristic function

series solution (e.g. Legendre Series or Chebyshev Series) for the result. The series

solution is then converted to the appropriate waveform type.

3.3.2.4 Integral/Differential Operators

One of the key advantages of using waveforms in dynamic simulations is that

integration and differentiation become very simple operators where the stability of a

numerical integration scheme is generally not an issue. For many waveform types, the

integration operator is a linear matrix operation with bounded coefficients. If the

argument waveform has bounded coefficients, the returned waveform will also be

bounded. Of course, numerical stability does not assure numerical accuracy. Because the

integration operator typically generates some truncation error, the returned waveform can

still contain considerable errors.

3.3.2.5 Waveform Content

The significance of the Truncation Error of a waveform can be estimated by

calculating the waveform content of its higher order term. The waveform content of a

term is defined as the magnitude of a coefficient divided by the square root of the sum of

the squares of all the coefficients. Normally, one expects the higher order terms of an

orthogonal series representation to progressively have smaller and smaller waveform

contents. Hence if the last few terms have values below a preset threshold, the truncation

error can normally be assumed negligible.

Accurate truncation error estimation is still a difficult and currently unsolved

research topic. The waveform content method is a practical method but should not be

taken as the last word on the subject.

3.3.2.6 Special Operators

Several special operators unique to waveforms should also be developed. One very

useful operator returns the time of zero crossing of the waveform. Another returns the

value and time of every local minimum and maximum of a waveform.

The smoothing operator is one method for reducing the waveform content of

higher order coefficients. A waveform is smoothed by returning the local average of the

waveform over some prespecified time increment. Smoothing eliminates discontinuities

- 66 -



in a waveform and its derivatives. Since discontinuities tend to amplify the waveform

content of the higher order terms, removing the discontinuities should reduce the higher

order term waveform content.

- 67 -



3.3.3 Jacobians

A Jacobian matrix contains the partial derivatives of the coefficients of one

waveform with respect to another waveform. Here is a sample C structure to define a

Jacobian:

typedef struct Jacobian
{
struct Waveform *num; /* address of waveform in the

numerator of the partial
derivatives */

struct Waveform *den; /* address of waveform in the
denominator of the partial
derivatives */

   long version;    /* Version number of the
jacobian matrix */

   long num_version; /* Version nbr of
numerator Waveform */

   long den_version; /* Version nbr of
denominator Waveform */

   void **j; /* array of jacobian elements
The first row index is for
an array of pointers whose
elements are arrays with
the colum index */

   char sj; /* Structural Jacobian Code */

struct Jacobian *next; /* address for linked list
of Jacobians */

}
JACOBIAN;

Jacobians are used in the process of solving simultaneous systems of waveform

equations through relaxation methods or through the Newton-Raphson Method. The

purpose of num_version and den_version is to record which versions of the numerator

and denominator waveforms the jacobian was calculated for. The element version is used

when several jacobians are combined and it is necessary to determine whether the

combined matrix must be recalculated.

In general, all operations defined for a waveform should also generate the jacobian of

the results with respect to the arguments. Through the use of the chain rule, the jacobian

matrix of the export variables of a device with respect to the device import variables can be

determined.

The structural jacobian code indicates the dependence and structure of the

jacobian matrix. Here is a list of the codes:
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Code Type of Matrix

0 Zero Matrix (all elements are always zero)

I Identity Matrix (always the identity matrix)

D Diagonal Matrix (always a linear main diagonal matrix)

L Linear Matrix (The elements are always constant)

N Nonlinear Matrix (The elements may not be constants)

U Unknown (The dependence is unknown (treat as nonlinear))

The structural jacobian code along with the version numbers determines whether or

not a jacobian matrix needs to be recalcuated. If the structural jacobian is of type 0, I, D,

or L then the jacobian need not be reconstructed if the there is a version mismatch between

the waveform version and the jacobian version. If the structural jacobian of type N or U,

and there is a mismatch between the version numbers of the jacobian and the waveforms,

then the jacobian elements must be recalculated. After every recalculation, the version

numbers are updated. In this manner, only jacobian matrices with changing coefficients

are ever recalculated.

Technically, the structural jacobian codes depend on the waveform type used. In this

thesis however, all of the waveform types produce the same structural jacobian codes.

3.3.3.1 Jacobian Operators

Several operators for jacobian objects will prove useful in developing a simulation

environment. These operators include:

1. Addition and Subtraction

2. Identity and Zero Jacobian generators

3. Multiplication by a constant

4. Multiplication of two jacobians

5. Multiplication of a jacobian by a waveform

6. Inverting a jacobian

If the waveform is described by an array of double precision floating point numbers,

the Jacobian coefficients can also be defined to be an array of double precision floating

point numbers. In this case, the above operations employ standard matrix manipulations.

- 69 -



3.3.4 Waveform Examples

While the possibilities of waveform definitions is endless, this thesis will concentrate

on the following waveform types:

Waveform Type Code

Undefined 0

Data Series 1

Fourier Series 2

Legendre Series 3

Polynomials 4

Matlab Polynomials 5

Chebyshev Series 6

The code in the above table refers to the value of element type in the WAVEFORM

structure. Appendix E describes these waveforms and their arithmetic in great detail.
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3.4 Conducting the Simulation

Once the physical system has been specified by device descriptions and network

equations, the solution for all of the system variables can be determined in several ways.

The method used in this thesis is the Newton-Raphson method with continuation

parameters.

3.4.1 Basic Newton-Raphson Algorithm

The Newton-Raphson method solves a system of nonlinear equations F(x,u) = 0,

, for the system variables with system input variables by first

linearizing the system of equations about a given guess for the solution xk then solving the

linear system to produce a new guess xk+1. This procedure is repeated until F(xk,u) = 0 is

satisfied within a given tolerance. The sequence of points xk starting with k = 0 is called

the solution trajectory for x0. A converging solution trajectory eventually converges to a

solution while a diverging solution trajectory does not.

F(x,u) is linearized by taking the Taylor series expansion about the point xk:

where the Jacobian matrix J(xk,u) is defined by:

Assuming the error O(x•x) is negligible and the Jacobian can be inverted, the

correction for a given guess xk is given by the linear approximation:

The correction is applied to xk to produce xk+1, the value of x for the next iteration:

Around each solution of F(x,u) = 0 for which the Newton-Raphson method reliably

converges, a region exists such that if a trajectory enters that region, it will never leave and

eventually converge to the solution. The size of this local convergence region depends on

the nonlinearity of the system. For purely linear systems, this region encompasses the

F() ∈ ℜ n x ∈ ℜ n u ∈ ℜ m

F(x ,u ) = F(xk,u ) + J(xk,u )x∆ +O(x ⋅ x) = 0

x = xk + x∆

J(x 0,u ) =
∂F(x 0,u )

∂x

x∆

x∆ = −J−1(xk,u )xk

xk +1 = xk + x∆
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entire space. If the intitial guess falls within the local convergence region, the

Newton-Raphson method will by definition converge. If the initial guess falls outside the

local convergence region, one of several things can happen. First, the solution trajectory

could enter the local convergence region of a solution and converge on a solution. Second,

the Newton-Raphson method could fail due to a singular Jacobian. Third, the trajectory

could diverge and tend to infinity. Fourth, the trajectory could become cyclic where

xk+q = xk for k sufficiently large enough. Finally, the trajectory could enter a chaotic region

in which there is no solution but from which the trajectory never leaves and is not cyclic.

As an example, define F(x,u) to be the following 1×1 system:

Figure 3.4.1-1: F(x,u) = x3-x

The Jacobian matrix is:

The recursion formula for xk+1 is given by:

ℜ n

F(x ,u ) = x 3 − x

-10

-5

0

5

10

-1 1

Region 1: -1
Region 2:  0
Region 3:  1
Region 4:  1
Region 5: -1

3x2=1
5x2=1

Regions

F(x)=x3-x

54 321

J = [3x 2 − 1]

xk +1 = xk −
(xk)3 − xk

3(xk)2 − 1
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There are three solutions for this system and their local convergence regions are

given by:

Root Local Convergence Region

x1 = -1

x2 =  0

x3 = +1

In two other regions, the solution trajectory jumps to one of the local convergence

regions after one iteration:

Root Convergence Region

x1 = -1

x3 = +1

In two other regions, the solution trajectory may jump to one of the local

convergence regions after several iterations or fail to converge:

Variable Behavior Region

On the boundaries for the above regions, the Newton-Raphson method fails:

−∞ < x 0 < −√ 1
3

−√ 1
5
< x 0 <√ 1

5

√ 1
3
< x 0 < ∞

0.46560 < x 0 <√ 1
3
= 0.57735

−√ 1
3
= −0.57735 < x 0 < −0.46560

√ 1
5
= 0.44721 < x 0 < 0.46560

−0.46560 < x 0 < −√ 1
5
= −0.44721
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x0 Failure Mode

Singular Jacobian

Singular Jacobian

Cyclic Trajectory

In the above analysis, no constraints were made in the speed of convergence or on

the size of x. If the speed of convergence will be very slow since and

the number of iterations l required will be about:

Furthermore, most machines have a limit as to the largest number which can be

represented. If an iteration causes x to exceed this number in magnitude, a floating point

overflow error will typically be generated. This phenomena is known as Newton Overflow

and has the effect of reducing the size of the convergence regions. For example, if x is

known to be bounded by the interval [-10 10], then x0 should be restricted to the following

regions:

Root  Convergence Region

x1 = -1

x2 = 0

x3 = +1

±√ 1
3

±0.46560

±√ 1
5

xk +1 ≈ 2

3
xk| xk | 1

l − k ≈
log(| xk |)
log(1.5)

≈ 5.68 log(| xk |)

−10 < x 0 < −0.58904

0.46560 < x 0 < 0.56675

−√ 1
5
= −0.44721 < x 0 <√ 1

5
= 0.44721

−0.56675 < x 0 < −0.46560

0.58904 < x 0 < 10.0
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3.4.2 Continuation Methods with Newton-Raphson

The previous discussion indicates the need for careful selection of the initial guess x0.

The use of a continuation parameter in so called homotopy methods is one of the many

ways for attempting to generate x0 within the convergence region of the desired solution.

In general, a function H(x,u,α) = 0 is generated such that H(x,u,1) = F(x,u) and

H(x,u,0) = G(x,u) where G(x,u) is a linear function in x. One common method of creating

H(x,u,α) is:

The problem now is to develop the linear function G(x,u). There are several

approaches which can be taken for each row Gi(x,u):

1. Linearize about a known operating point. This is equivelent to providing an

initial guess for each of the variables and using the Newton-Raphson method

directly.

2. Use a least squares fit of a linear system over a known operating region of

Fi(x,u).

3. Select Gi(x,u) such that the solution for H(x,u,0) = 0 is most likely to be within

the convergence region of F(x,u).

Once H(x,u,α) has been constructed, it can be used in several ways:

1. Start with α=0 and obtain a solution to the linear system, then progressively

increment alpha by small amounts and solve the nonlinear system until α=1. The

rational is to employ the unbounded local region of convergence of the linear system

to move the initial guess into the local region of convergence for the next nonlinear

system formed by incrementing α. As α is incremented, the solution for the previous

value of α is assumed to be within the local region of convergence for the present

value of alpha. Appendix B demonstrates this may not always happen due to

bifurcations of solutions as α is incremented.

2. Start with α=1 and attempt to obtain a solution to the nonlinear solution. If the

trajectory has not converged after nmax iterations, decrement α and attempt to find a

solution. Progressively decrement α until a solution is obtained, then increment α
using the solution of the previous value for α for the initial guess. This procedure

assumes the local convergence region for a given solution will increase as α is

H(x ,u , α) = αF(x ,u ) + (1 − α)G(x ,u )
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decremented. Eventually the local convergence region should grow large enough to

encompass even a poor guess for the solution. This procedure has the advantage over

the previous method in that it may avoid bifurcations which occur between 0 and the

minimum value for α used. However, the number of iterations for α may be larger.

Note that the value for nmax as well as the convergence criteria may be a function of

α. There is no reason to obtain a highly accurate solution for intermediate values of α
since the only purpose is to move the initial guess for the next α iteration into the new

local region of convergence. Only when α=1 should the convergence criteria be enforced

for obtaining a highly accurate solution.
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3.4.3 Simulation Algorithm

The simulation algorithm employed by WAVESIM is conducted totally within the

MATLAB environment and is composed of four parts. The first part initializes all of the

simulation parameters. The second part performs the time increment control and has

embedded with in it the third part which is the sequential solving of each of the blocks.

The final part is composed mostly of plotting and storing the results of the simulation.

Figure 3.4.3-1: Simulation Flowchart
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3.4.3.1 System Initialization

A number of parameters and arrays need initialization before the simulation can

commence. These parameters and arrays are:

n Initial number of waveform coefficients
N Actual number of waveform coefficients used

wtype Waveform type indicator

t0 Beginning time of simulation
t1 Ending time of simulation

sb_n_min Minimum number of coefficients to use
sb_n_max Maximum number of coefficients to use

sb_n_data Number of points per waveform for plots

sb_dt_init Initial time increment
sb_dt_optimum Optimum time increment

sb_dt_min Minimum time increment
sb_dt_max Maximum time increment

sb_dt_ave Minimum time of interest (Averaging interval)

Break Points are user specified times for which waveform interval boundaries are

forced to occur. Break Points are completely optional and their inclusion is up to the

system modeler.

sb_bp Array of Break Points
sb_bp_nbr Number of break points

sys_node_serial Array of Node Serial Numbers
sys_node_name Array of Node Names

sb_alpha_init Initial Value of continuation parameter alpha for nonlinear
blocks

sb_dalpha_init Initial Value of alpha increment

sb_dalpha_min Minimum alpha increment
sb_dalpha_max Maximum alpha increment

sys_Gmin Array of Gmin values for all of the nodes
sys_Rmin Array of Rmin values for all of the nodes

The index for sys_Gmin and sys_Rmin are the node numbers of the nodes they

apply to.
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sb_check_eqn_err = 0 for don’t check equation error
= 1 for checking equation error

sb_check_var_err = 0 for don’t check max variable correction
= 1 for checking max variable correction

sys_kcl_err Array of maximum KCL errors for all nodes
sys_pot_err Array of maximum Potential Differences for all nodes

sys_nd_err Array of max corrections to Node Potentials for all nodes
sys_fv_err Array of max corrections to Flow Variables for all nodes

sb_i_kcl_err Multiplier for maximum KCL error
for alpha less than 1

sb_i_pot_err Multiplier for maximum Potential Difference
for alpha less than 1

sb_i_nd_err Multiplier for max correction to node potential
for alpha less than 1

sb_i_fv_err Multiplier for max correction to flow variable
for alpha less than 1

The index for the above eight arrays are the node numbers of the nodes they apply

to.

sb_maxcnt Maximum number of iterations for alpha = 1
sb_i_maxcnt Maximum number of iterations for alpha < 1

sb_div_start_cnt Number of iterations to skip before checking
for divergence

sb_div_max_cnt Maximum number of diverging iterations before
assume system is diverging

sb_i_div_err Multiplier of errors for ignoring diverging check

sb_max_wc Maximum waveform content of a waveform
sb_nbr_wc Number of coefficients to apply waveform content to
sb_mult_wc Multiplier to sb_max_wc for decrementing N

sys_pot_scale Array of Scaling factors for node potentials
sys_flow_scale Array of Scaling factors for flows attached to nodes

The index for sys_pot_scale and sys_flow_scale are the node numbers of the

nodes they apply to.

dev_par_name Device parameter arrays: name is the device name
dev_s0_name Device state initial value array:

name is the device name
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ivar_nd_nbr Initial guesses for node potentials:
nbr is the node serial number

ivart_nd_nbr Waveform type for initial guess
nbr is the node serial number

ivar_fv_name Initial guess for flow variables:
name is the variable name

ivart_fv_name Waveform type for initial guess
name is the variable name

his_t Matrix of time increment end points
First row is beginning of intervals
Second row is end of intervals
Columns are waveform interval index

his_N Vector of number of coefficients in waveforms for each
waveform interval

his_col The waveform interval index. After simulation this equals
the number of columns in history arrays

his_nd_nbr Matrix of Node Potential waveforms. Each column
corresponds to the waveform for the node potential over a
given waveform interval. nbr is the node serial number

his_fv_name Matrix of Import Flow Variable waveforms. Each column
corresponds to the waveform for the import flow variable
over a given waveform interval. name is the variable name

his_s_name Matrix of Device name state values. The first column
corresponds to the initial state values with subsequent
columns corresponding to the state values at the end of
waveform intervals. Note this matrix has 1 more column
than all the other history arrays.

blk_nbr_nrow Number of rows in block nbr
blk_nbr_ncol Number of columns in block nbr
blk_nbr_row_sys Cross Reference of Block nbr rows to System Rows
blk_nbr_col_sys Cross Reference of Block nbr columns to System Columns

blk_nbr_linear_flag = 0 if block nbr is nonlinear
= 1 if block nbr is linear
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Time Increment Initialization

ddt Actual time increment
tt0 Beginning of current waveform interval
tt1 End of current waveform interval

ddt, tt0, and tt1 are initialized according to the following equations:

ddt = sb_dt_init

tt0 = t0

tt1 = minimum of:
t0 + ddt

t1

sb_bp(1)

cnt_tot Set to zero: Total number of Jacobian inverses

his_flops Number of floating point operations used
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3.4.3.2 Time Loop

Truncation Error Control

The simulation time interval between t0 and t1 may be divided into a number of

waveform intervals to improve the truncation error of the system variable waveforms. In

general, truncation error can be reduced by either increasing N or by decreasing the

waveform interval tt1 - tt0. Within WAVESIM, the general strategy for dealing with

too large of a truncation error is to increase the number of coefficients N if the waveform

interval is less than sb_dt_optimum and shorten the waveform time interval if greater

than sb_dt_optimum. In general, the strategy is to minimimize N while maximizing the

waveform interval subject to the constraint that the truncation error is within tolerances.

Finding the optimum combination of waveform intervals and number of coefficients is

not obvious and much work remains for developing better algorithms.

3.4.3.2.1 Time Loop iteration initialization

The simulation time loop continues as long as tt0 < t1. The beginning of each

iteration begins with the definition of the following arrays:

tt = [tt0 tt1 sb_dt_ave]

ii = Identity Matrix of size N

zz = Zero Matrix of size N×N

Variable Initial Guesses

Next, initial guesses are provided for all system variables (var_nd_nbr and

var_fv_name) by converting the waveforms ivar_nd_nbr of type ivart_nd_nbr and

waveforms ivar_fv_name of type ivart_fv_name into waveforms of type wtype and

size N.

In the present incarnation of WAVESIM, the same waveform is used as the initial

guess for all waveform time intervals regardless of the values for tt0 and tt1.

Normally, a constant value is specified. A better method would allow the user to specify

an actual guess as to the waveform history as a function of time. The time loop iteration

initialization would then have the responsibility of converting the waveform data as

provided by the user into a waveform of type wtype and size N over the interval between

tt0 and tt1. Providing an initial guess for the waveform history of all the variables

would allow for example, a linear model of a system be run first to generate the initial

guess for a nonlinear model of the same system. Convergence of the nonlinear system
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should be greatly accelerated for many systems. Parameter sensitivity studies would

also be greatly accelerated if the parameter variations are not expected to cause major

changes in system performance.

Failure Flags

Two final variables, converge_failure and fatal_error are initialized to zero.

converge_failure is set to one by a block if convergence failed for that block or if one

of the block waveforms has too large of a harmonic content. Convergence could fail if

the number of iterations exceeded the maximum allowed and the alpha increment is

smaller than the minimum allowed. converge_failure is used to indicate the following

blocks should not be solved because previous blocks could not be solved. fatal_error

is set to one if convergence cannot be obtained even when N is equal to or greater than

the maximum value sb_n_max and the time increment is equal to or smaller than the

minimum value sb_dt_min. If fatal_error is set, the simulation fails.
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3.4.3.2.2 Solving the Blocks

The blocks are solved sequentially in the order of their detection in the system

reduction procedure. If converge_failure is nonzero, a previous block could not be

solved for the given time increment and number of coefficients. For this reason, a block

is not solved if converge_failure is nonzero.

Figure 3.4.3-2: Solving the Block

3.4.3.2.2.1 Block Initialization

Each block requires the initialization of several arrays and variables before the

block can be solved:
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blk_nbr_max_eqnerr Array of maximum errors for the block equations
blk_nbr_max_varcor Array of maximum variable corrections for the block

variables

blk_nbr_imax_eqnerr Array of multipliers to blk_nbr_max_eqnerr for
alpha < 1

blk_nbr_imax_varcor Array of multipliers to blk_nbr_max_varcor for
alpha < 1

blk_nbr_cnt Number of iterations (initialized to 0)
blk_nbr_cnt_div Number of diverging iterations (initialized to 0)

blk_nbr_alpha Block continuation parameter.
= 1 if linear block
= sb_alpha_init if nonlinear block

blk_nbr_dalpha Block continuation parameter increment
= sb_dalpha_init

good_alpha Last value of alpha for which block converged.
Initialized to -1

good_var_nd_nbr Last value of node nbr potential for which block
converged. Initialized to var_nd_nbr

good_var_fv_name Last value of import flow name for which block
converged. Initialized to var_fv_name

blk_nbr_trec Recommended recalculation time for block
Initialized to tt1

blk_nbr_ivc Array of indexes in block variable array for which the
variable correction was greater than allowed.
Initialized to an empty array.

div_cnt Number of diverging iterations, set to 0

div_err Maximum relative error of previous iteration
Initially set to 0.
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3.4.3.2.2.2 Continuation Parameter Loop

The block continuation parameter loop continues as long as blk_nbr_alpha ≤ 1.

Within this loop, the following procedures occur:

1. Import Variables for all associated devices specified

2. Device Objects called to generate

A. Export Variables

B. Device Jacobian Matrix

C. State values at time tt1

D. Recommended recalculation time

3. Block recalculation time calculated

4. KCL and Potential Difference Equation Errors calculated

5. Errors Scaled and compared to maximum limits

if good, solution saved and blk_nbr_alpha incremented

as necessary.

6. Iterations counted and compared to maximum limit

blk_nbr_alpha decremented and variables reset

as necessary.

7. Block Jacobian Matrix assembled and scaled

8. Variable Corrections Calculated

9. System variables corrected

3.4.3.2.2.2.1 Device Import Variable specification

The matrix dev_i_name is generated for each device name where the columns

are the waveform coefficients for each of the device import variables. Each column of

the dev_i_name matrix is one of the system variables, hence all are available.

3.4.3.2.2.2.2 Call Device Objects

Each of the device objects associated with the block is provided with the

following information:

wtype Waveform type

dev_i_name Device name import variable matrix
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dev_par_name Device name parameter array

dev_s0_name Device name state initial value tt0 array

tt Time structure
blk_nbr_alpha Block nbr Continuation Parameter

From this information, each of the device objects generates the following

dev_e_name Device name export variable matrix

dev_j_name Device name jacobian matrix

dev_s1_name Device name state final value tt1 array

dev_tr_name Device name recommended recalculation structure
= [nt1 ntt] where
nt1 = recommended tt1 for present interval

or set to tt1 if no recommendation
ntt = recommended tt1 for next interval

or set to tt0 if no recommendation

3.4.3.2.2.2.3 Recommended Recalculation Time

The block recommended recalculation time blk_nbr_trec is set to the

minimum value of all the nt1 values from all of the devices associated with the block.

If convergence fails blk_nbr_trec is used to generate a new value for tt1.

Similarly, blk_nbr_ntrec is set to the minimum value of all the ntt values

greater than tt1 from all of the devices associated with the block. For a successful

convergence, blk_nbr_ntrec is used to help generate a new value for tt1 for the

next waveform interval.

3.4.3.2.2.2.4 Equation Errors

For each of the node nd KCL equations associated with block nbr, an error

variable blk_nbr_kcl_nd is generated by adding the flow variables of the attached

terminals to the flow through Gmin. Likewise, for each of the export potential name

Potential Difference equations associated with block nbr, an error variable

blk_nbr_pot_name is generated by subtracting from the node potential waveform, the

waveform of the export potential as well as the contribution from Rmin

blk_nbr_kcl_nd = Σ dev_e_name(:,col) + Σ var_fv_vname +
var_nd_nd × Gmin
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blk_nbr_pot_vname = var_nd_nd - dev_e_name(:,col) -

dev_x_name(:,col) × Rmin

where

nbr Block Number
nd Node Serial Number

name Device name
vname Variable name

(:,col) The appropriate column from the matrix
x Either e or i depending on associated flow variable

being an export or import variable

The KCL equation errors are multiplied by the appropriate flow variable scaling factor

from the sys_flow_scale array while the Potential Difference equation errors are

multiplied by the appropriate potential scaling factor from the sys_pot_scale array.

Once scaled, the error vectors are assembled into a block error vector blk_nbr_err.

3.4.3.2.2.2.5 Error Criteria Check

Applying Error Criteria

If blk_nbr_alpha ≥ 1 then blk_nbr_ier is filled with the indexes of the rows

of blk_nbr_err which are greater in magnitude than the corresponding rows of

blk_nbr_max_eqnerr. In the same manner, blk_nbr_rel_err is set equal to the

absolute value of blk_nbr_err divided by blk_nbr_max_eqnerr.

If blk_nbr_alpha < 1 then blk_nbr_ier is filled with the indexes of the rows

of blk_nbr_err which are greater in magnitude than the corresponding rows of

blk_nbr_imax_eqnerr. Similarly, blk_nbr_rel_err is set equal to the absolute

value of blk_nbr_err divided by blk_nbr_imax_eqnerr.

Divergence Check

On the first iteration for a given value blk_nbr_alpha, div_cnt is initialized to

0. For the first sb_div_start_cnt - 1 iterations, div_err is set to the maximum

value of blk_nbr_rel_err. On subsequent iterations, if the maximum value of

blk_nbr_rel_err is smaller than div_err then div_cnt is reset to 0, otherwise

div_cnt is incremented. In any case div_err is set to the maximum value of

blk_nbr_rel_err. If div_cnt ≥ sb_div_max_cnt then the algorithm assumes the
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block is diverging for the given value of blk_nbr_alpha. The failure to converge

condition is indicated by setting blk_nbr_cnt = maxcnt: either sb_i_maxcnt if

blk_nbr_alpha < 1 or sb_maxcnt if blk_nbr_alpha ≥ 1.

Block Convergence Success

If blk_nbr_ier is the empty set or sb_check_eqn_err is 0, and

blk_nbr_alpha ≥ 1 and blk_nbr_ivc is the empty set, then the block solving

algorithm has been completed and the continuation parameter loop is broken. The

algorithm proceeds to checking the truncation error for the system variables associated

with the block.

Increment Continuation Parameter

If blk_nbr_ier is the empty set or sb_check_eqn_err is 0, and

blk_nbr_alpha < 1 and blk_nbr_ivc is the empty set, then it is time to increment

the continuation parameter blk_nbr_alpha. First however, the current value of all

the variables associated with the block are copied into good_var_nd_nd or

good_var_fv_name. blk_nbr_alpha is copied into good_alpha. The variables and

continuation parameter must be saved because it may be necessary to restore the

variables if the block fails to converge with the next continuation parameter value.

blk_nbr_alpha is then set equal to the minimum of 1 and

blk_nbr_alpha + blk_nbr_dalpha and the continuation parameter loop is repeated.

Iteration Count: Decrement Continuation Parameter

If the error is still too large, corrections to the system variables associated with

the block must be generated. But first, the number of iterations blk_nbr_cnt must be

incremented and compared to the maximum allowed maxcnt: either sb_i_maxcnt if

blk_nbr_alpha < 1 or sb_maxcnt if blk_nbr_alpha ≥ 1. If the limit has been

exceeded, and one of the devices has recommended a value for blk_nbr_trec less

than tt1, then converge_failure is set to 1 and attempts to solve the block cease. If

the limit has been exceeded and blk_nbr_trec equals tt1, the block is recalculated

with a decremented blk_nbr_alpha which is set to the maximum of:

(blk_nbr_alpha + good_alpha) / 2

blk_nbr_alpha - blk_nbr_dalpha

0
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If blk_nbr_alpha has been decremented, the system variables associated with

the block must be reset to the values stored in either good_var_nd_nd or

good_var_fv_name.

Block Convergence Failure

If blk_nbr_alpha - good_alpha < sb_dalpha_min then the block has failed

to converge and nothing more can be done on the block level. The variable trec is

set equal to blk_nbr_trec and the converge_failure flag is set to 1. This is a

signal to the system to not solve any more blocks and either adjust the value of tt1 or

adjust the number of coefficients N before trying to solve the system again.

3.4.3.2.2.2.6 Assemble Jacobian

Jacobian Construction

If the error is too large, but the maximum number of iterations maxcnt has not

been exceeded, the block jacobian matrix must be calculated. The block jacobian

matrix blk_nbr_j is constructed in the same manner as the system structural jacobian

was previously constructed with the exception that now the variables and equations

are only those which are part of the block and the matrix elements are submatrices

instead of structural jacobian codes.

Jacobian Scaling

Once the block jacobian has been assembled, it is scaled by dividing each of the

columns by the appropriate element of either the sys_flow_scale (if the column

corresponds to an import flow variable) or sys_pot_scale (if the column corresponds

to a node potential) vectors. Likewise, rows of the block jacobian are multiplied by

the appropriate element of either the sys_flow_scale (if the row corresponds to a

KCL equation) or sys_pot_scale (if the row corresponds to a Potential Difference

equation) vectors. Scaling is performed to normalize all of the variables and

hopefully improve the accuracy of the numerical computations required for solving

the variable corrections.

Correction Vector Calculation

The variable correction vector blk_nbr_dlta is generated by solving the matrix

equation:
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blk_nbr_j blk_nbr_dlta = blk_nbr_err

The most direct method (and one of the least numerically efficient method) of

calculating blk_nbr_dlta is to invert blk_nbr_j and multiply by blk_nbr_err.

Relaxation methods and Gaussian elimination with back substitution are other means

to the same end.

Singular Jacobian

If blk_nbr_j is singular, blk_nbr_dlta can not be calculated and in the present

incarnation of WAVESIM, the simulation fails. Future versions should include an

algorithm for attempting to recover from the singular jacobian.

3.4.3.2.2.2.7 Correct Variables

Each of the system variables associated with the block are corrected by

subtracting the appropriate rows of blk_nbr_dlta divided by the corresponding

element of the scaling factor vectors (sys_pot_scale or sys_flow_scale).

3.4.3.2.2.2.8 Variable Correction Criteria

If the block is nonlinear (blk_nbr_linear_flag == 0) and the variable

correction flag is set (sb_check_var_err == 1) then blk_nbr_ivc contains the

indexes of blk_nbr_dlta which exceed in magnitude blk_nbr_imax_varcor if

blk_nbr_alpha < 1 or blk_nbr_max_varcor if blk_nbr_alpha ≥ 1. If

blk_nbr_ivc is not empty, then one of the variable corrections was too large and

another iteration is necessary. In any case, the continuation parameter loop is

repeated.
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3.4.3.2.2.3 Truncation Error Control

Once a block has been solved, a truncation error check must be performed on

each of the associated system variables. The truncation error is assumed negligible if

the waveform content of the last sb_nbr_wc coefficients of each waveform is less than

the limit specifed by sb_max_wc. If all the system variables have negligible truncation

error, block nbr has been solved and the next block is processed. If the truncation error

of any of the variables is too large, converge_failure is set to 1 to indicate the block

has not been solved.

3.4.3.2.3 Time Step Control: Successful Convergence

If all the blocks successfully obtained a solution then the variable

converge_failure will equal 0. The task now is to save all of the variables in the

history arrays, update tt0 and tt1, update N, and update the device states.

Update History Variables

The history variables are extended by one column. The variable his_col is

incremented and is the column index for all but the state arrays. In particular:

his_t(1,his_col) = tt0

his_t(2,his_col) = tt1

his_N(1,his_col) = N

his_nd_nbr(1:N,his_col) = var_nd_nbr

his_fv_name(1:N,his_col) = var_fv_name

his_s_name(:,his_col+1) = dev_s1_name

dev_s0_name = dev_s1_name

where (1:N,his_col) refers to the first N rows of column his_col and (:,his_col+1)

refers to all the rows of column his_col + 1.

Update Time Interval and Number of Coefficients

The time interval is updated by:

tt0 = tt1

If tt0 ≥t1 then the simulation has successfully completed and the time loop is

exited. Otherwise must update tt1 as well. Initially:

tt1 = tt1 + ddt
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Next, check if a break point (element of sb_bp) exists between tt0 and tt1. If

such a break point exists, set tt1 equal to the earliest break point after tt0.

Since reducing N is normally beneficial, if tt1 - tt0 > sb_dt_optimum and

N > sb_N_min the algorithm assumes the waveforms are well behaved and

decrementing N (as long as N > sb_n_min) is appropriate.

Since the series converged for the previous time increment, setting ddt equal to the

minimum of 2×ddt and sb_dt_max allows the system to increase the next time interval.

Plot Intermediate Results

Before proceeding to solve the system over the updated time interval, WAVESIM

creates a plot of the system variables over the previous time interval.
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3.4.3.2.4 Time Step Control: Unsuccessful Convergence

Fatal Error

If one of the blocks failed to converge, tt1 - tt2 ≤ sb_dt_min, and

N ≥ sb_n_max then the simulation has failed completely and can not proceed further. In

this case, the simulation comes to a halt prematurely.

Recommended Recalculation Time

If one of the blocks failed to converge and trec < tt1,then tt1 = trec and the

time loop is repeated.

Time Increment / Number of Coefficient Control

If one of the blocks failed to converge and trec ≥ tt1,

tt1 - tt0 ≤ sb_dt_optimum and N < sb_n_max, N is incremented in an attempt to

improve convergence. To improve convergence if tt1 - tt0 > sb_dt_optimum or

N ≥ sb_n_max, the time interval is halved by setting tt1 = (tt1 + tt0)/2.0.

Halving ddt is also prudent as long as ddt ≥ sb_dt_min. Once ddt and N have been

updated, the time loop is continued.

3.4.3.3 Simulation Wrap-up

Once the simulation has completed, the variables stored in the history arrays are

plotted and saved as the user desires. If the operator desires, the device state variables

can be used as the initial conditions for a following simulation or saved in file for future

simulations.
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3.5 Device Modelling Techniques

The previous sections described the method WAVESIM uses to generate a

mathematical system of equations and variables for interconnecting a number of different

devices. Up to now a device has been treated as a black box characterized by its definition,

initialization, variables which must be provided to it as resources and variables which are

generated by it as products. As a review, here are properties of the black box:

Definition (device.def)

Name of Device Type

Number of Parameters

Names of Parameters

Default Values of Parameters

Number of States

Names of States

Default Values of State Initial Conditions

Number of terminals

Terminal Definitions

Terminal Name

Terminal Type (normal or information)

Flow Variable Type (import or export)

Potential Variable Type (import or export)

Terminal KCL Group Number

Device Structural Jacobian

Initialization (WAVESIM input file)

Name of Device

Name of defining Device Type

Parameter Values

State Initial Conditions

Assignment of terminals to nodes
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Resources (Arguments of MATLAB device.m file)

Waveform type

Import Variable Waveforms

Parameter Values

Value of states at beginning of time interval

Time Structure

Beginning time of Interval

Ending time of interval

Minimum time interval of interest

Continuation Parameter

Products (Products of MATLAB device.m file)

Export Variable Waveforms

Device Jacobian Matrix

Value of states at end of time interval

Recommended Time Structure

Recommended Recalculation Time this interval

Recommended ending time of next interval.

While these specifications are the hard requirements for developing a new device type,

they are not very constraining and it is possible to generate very inefficient and unworkable

devices. The following sections are meant as guidance for developing new device types.
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3.5.1 Import and Export Variable definitions

One of the first tasks in designing a new object is determining which variables should

be import variables and which should be export variables. The requirement is simply that

the total number of export variables associated with normal terminals must equal the total

number of import variables associated with normal terminals. To minimize the number of

system equations however, one should usually try to define flow variables as export

variables and potential variables as import variables.

The constitutive equations defining a device may preclude defining all the flow

variables as export variables. An ideal voltage source of magnitude VS for example, has

the following constitutive equations:

V1 = V2 + VS

I1 = - I2

Clearly, this set of equations can not be reorganized to specify both currents (flows)

explicitly. In this case potential V1 and flow I1 are export variables and potential V2 and

flow I2 are import variables.
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3.5.2 Interface Variable Units

When developing devices, a consistent convention for interface variable units is

required. Flows are usually referenced such that positive flow into a terminal with a

positive potential refers to power dissipated by the device. This definition is clear if the

flow corresponds to currents or forces, but is less clear for torques. For rotating shafts

where torques are the flow variable and rotational speed the potential, the positive

direction for speed is in the normal operating direction while the direction for torque is

determined by the power dissipation rule. A motor connected to a propeller would

normally have associated a positive rotational speed and a negative torque. The propeller

would have a positive rotational speed and a positive torque associated with its interaction

with the motor along with a positive forward speed and negative force associated with its

interaction with the ship dynamics. The ship dynamics model would have an associated

positive force and positive forward speed.

Many power system simulations go through great effort to normalize all variables by

dividing by device base quantities to improve numerical accuracy. The models are all

expressed in a Per Unit (PU) basis where the base quantities are machine ratings. The

problems occur when several devices with different base quantities are combined. The

system variables must all be scaled appropriately to ensure the elements of the system

equations are all in the same units. Keeping the bases consistent requires much effort and

is very prone to error.

In WAVESIM, physical quantities using the metric system (SI) are recommended for

all interface variables. Strict use of the metric system ensures the proper quantities are

added and subtracted on the systems level. Individual devices may then scale the interface

variables by their own base quantites for internal calculations. Likewise, each node of the

system can have a scaling factor assigned to it for both flow and potential variables. In this

manner, the beneficial aspects of the per unit system can be retained with little confusion

as to ensuring consistent base quantities.
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Metric System (SI)

Length meters

Time seconds

Mass kilograms

Voltage volts

Current amperes

Force newtons

Angle radians

Speed meters/second

Rotational Speed radians/second

Torque newton-meters
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3.5.3 Potential References

The node potentials are all referenced to an arbitrary value called 0. The reference

frame for this level is a property of the device definition, but must be consistent with the

reference frame for other device definitions to which the device may be connected.

Following are suggested reference points:

Electrical Voltage Volts above Ground Potential

Mechanical Angle Radians relative to the positive vertical

Mechanical Rotational Radians per Second relative to stationary

Speed

Mechanical System Dependent

Displacement

Mechanical Speed meters per second relative to stationary

If mechanical rotational speeds or mechanical speeds are specified, but the actual angle is

required within the device calculations, the speed can be integrated. If more than one

device requires the integration of the speed, then the system modeller must ensure the state

initial conditions corresponding to the angle or displacement is consistent for all devices.

If an absolute reference cannot be established for a device, two terminals can be

defined such that all constitutive relations depend only on the difference between the two

terminal potentials. This relative definition of potentials is commonly used for modelling

circuit elements. An ideal transformer for example, is a four terminal device with the

following constitutive equations:

V1p = n(V2p - V2m) + V1m

i1m = - i2m / n

i1p = - i1m

i2p = - i2m

Note that Vip is defined relative to V1m and is a function of (V2p - V2m). None of the export

flow variables is a function of the absolute value of any of the potentials.
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3.5.4 Discontinuity Control

One of the difficulties with using vectors of orthogonal series coefficients to

represent waveforms is the poor truncation error performance when approximating

discontinuous variables or variables having discontinuous derivatives. These

discontinuities are usually a function of either time or the zero crossing of one of the

variables. In any case, the time of the discontinuity is often easily determined by the

device object. If the frequency of the discontinuities is low enough, it would be prudent

for the device to specify the earliest discontinuity of the interval as a recommended

recalculation time.

If the discontinuity is a function of a waveform zero crossing, special care must be

taken to ensure the device does not continously estimate the zero crossing to be within a

small increment of tt0 or tt1 and force the time loop to iterate tt1 around the

discontinuity. One way around this problem is for the device to move or remove any

discontinuities within sb_dt_ave of either tt0 or tt1 in any of its export variables. If

sb_dt_ave is small enough, then moving the discontinuity should not affect the accuracy

of the simulation very much yet still prevent the system time loop from hunting for the

discontinuity by varying tt1.

If many discontinuities occur in an export variable more frequently than sb_dt_ave,

then the export variable should be smoothed. The smoothing operation calculates the local

average of a waveform over the interval [t-sb_dt_ave,t+sb_dt_ave]. In this manner, the

higher order terms of the export variable are attenuated and the waveform is more likely to

pass the truncation error test.

- 101 -



3.5.5 Consistent Initial Conditions

Most simulation environments require the user to specify the initial values for all the

states at time t0. In this regard WAVESIM is no different. Unfortunately, determining a

consistent set of initial conditions which meet some definition of normal operating

conditions is not an easy task for either a system modeler or a computer program. First of

all, the concept of a normal operating condition, is not always easy to describe

mathematically. Furthermore, even if a definition for normal operating condition, can be

made, there is often much difficulty in determing that condition.

An ideal solution would be for each device to calculate its own initial conditions

during the first time increment. If a device is capable of determining an initial condition

based only on its parameters and the values of its import variables, then the following

technique can be used:

1. Define a state called IC, always initialize it to 0.

2. Define Sufficient Parameters to determine the normal operating condition.

3. Within the constitutive equations, have a check for the initial value of IC

equalling zero. If IC = 0 at the beginning of the interval then use the

equations for the normal operationg condition to determine the initial values of

the other states. Otherwise use the initial values of the other states as passed to

the device. In any case, the final value for the state IC should be set to 1.

This method for determining the initial conditions is well suited for determining the

initial conditions of the states of rotating machines. Essentially, a load flow is conducted

in the first time increment to determine the initial state values.
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3.5.6 Waveform type conversion

Performing the calculations for the constitutive equations for certain devices may be

easier to accomplish in one waveform over other waveforms. Converting the import

variables to a fixed waveform type is permissible and at times desirable. As long as the

export variables are converted back to the proper type and the jacobians reflect the

waveform conversions, all should work out well.

If the export variables depend on higher order terms of intermediate calculations,

converting the import variables to waveforms of a length longer than N and performing all

of the intermediate calculations using this longer length before truncating back to N when

generating the export variables may be desirable in avoiding excessive truncation errors.
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Chapter 4 WAVESIM

4.1 Basic Description

WAVESIM, a simulation program written in the C programming language,

demonstrates the algorithms discussed in detail in Chapter 3 for simulating systems of

nonlinear lumped parameter models representing the electro-mechanical components

comprising an Integrated Electric Drive system. The general characteristics of WAVESIM

are:

1. System and Simulation Parameters specified in a text Input File.

2. Device Definitions are in text file device.def.

3. WAVESIM Performs following 4 tasks:

A. Reads in Device Definitions and initializes simulation.

B. Reads Input File and determines devices and nodes of system.

C. Builds and reduces system into a sequence of blocks.

D. Writes a MATLAB script file for conducting the simulation.

4. The actual Simulation is conducted in MATLAB.

5. Supported Waveform types are:

A. Data Series.

B. Fourier Series.

C. Legendre Series.

D. Polynomial Expansions.

E. Chebyshev Series.

6. Waveform operators are MATLAB functions defined in M-files.

7. Device Constitutive Equations are detailed in MATLAB functions defined in

M-files.

8. The present Incarnation of WAVESIM has these limitations:

A. Subsystems have not been implemented.

B. System and Device Structural Jacobians must be time independent.

C. Newton-Raphson is the only equation solving method used.

Relaxation Techniques have not been implemented.
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MATLAB was chosen as the environment for conducting the simulation for the

following reasons:

1. MATLAB is ideally suited for treating vectors and matrices as abstract data

types.

2. MATLAB has built in plotting routines.

3. The ability to create MATLAB M-files which when invoked, execute a long

series of commands called a script. M-files can also be used to create new

MATLAB functions.

4. MATLAB has many built in functions for analysing matrix properties.

5. Since WAVESIM is an algorithm demonstration program, speed is not of

primary concern. Interest in determining if the algorithms work is of higher

interest than optimizing for speed.
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4.2 Running WAVESIM

Under either the UNIX operating system or IBM DOS, WAVESIM is executed by

entering at the commmand prompt:

athena% wavesim file.in

where file.in is an optional entry for the file name of the input file. WAVESIM

will attempt to read in the device.def file and if successful, will display the following

header:

WAVESIM
Revision 2.0 <> April 1991

(C) Copyright 1990,1991 by Norbert H. Doerry

If WAVESIM encountered errors when reading device.def, an error message is

printed and the program terminates.

If file.in was not specified on the command line, the user is prompted for a file

name:

Enter WAVESIM INPUT file name :

If instead of a file name q is entered, WAVESIM terminates execution. A directory

listing can be obtained by entering a ? followed optionally by a file specification (operating

system dependent).

Under normal execution of WAVESIM, there is no further interaction with the user.

WAVESIM automatically creates an output file having the same base filename as

file.in but having .m as an extension (i.e. file.in becomes file.m).

NOTE: Do not create input files with .m extensions as these files will be overwritten

by WAVESIM. Also avoid using file names which are valid MATLAB functions.

WAVESIM provides extensive support for providing the user with feedback through

the use of the DEBUG command. Most of the major routines in WAVESIM have a debug

option for displaying the results of calculations internal to WAVESIM.
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If errors are found reading either device.def or the input file, WAVESIM displays

an error message which includes the file name and the line number within the file.

WAVESIM attempts to continue reading an input file even if errors are detected but will

only create an output file if no errors are encountered.
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4.3 Input File Specification

The Input File describes the system topology, defines the device parameters, and

specifies simulation paramaters. The basic characteristics of the file are:

1. ASC II text files.

2. Lines beginning with %, # or ! are ignored. Empty lines are ignored as well.

3. Data lines can be continued on the following line if the last characters in the line

are ... or \.

4. Commands all begin with a key-word. Key-words are case insensitive and

usually can be truncated to three letters unless a conflict with another key-word

exists.

5. Commands and their arguments may be separated by either spaces or tabs.

6. The contents of other files can be incorporated by using the INCLUDE command.

7. Single Line Commands have data arguments entered on only one line.

8. Multiple Line Commands consist of groups of subordinate commands. The group

must end with a line beginning with the key-word END.

Here is a summary of the Commands available :

DEBUG Print Debug Information

DEFAULT Default System Parameter Initialization

DEVICE Device Specification

INCLUDE Include another file

NODE Node Parameter Specification

TIME Time Increment Control
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Example Input File

%
% rcrc.in
%
debug

build_system_identify
build_system_blocks
find_block
END

%
device VDC_SOURCE Vs

TERMINAL 1 1
TERMINAL 2 0
PARAMETER VS 1.0
END

%
device RESISTOR R1

TERMINAL 1 1
TERMINAL 2 2
PARAMETER R 0.1
END

%
device RESISTOR R2

TERMINAL 1 2
TERMINAL 2 3
PARAMETER R 1.0
END

%
device INDUCTOR L1

TERMINAL 1 2
TERMINAL 2 0
PARAMETER L 1.0
END

%
device INDUCTOR L2

TERMINAL 1 3
TERMINAL 2 0
PARAMTER L 1.0
END

%
device CAPACITOR C1

TERMINAL 1 2
TERMINAL 2 0
PARAMETER C 1.0
END

%
device CAPACITOR C2

TERMINAL 1 3
TERMINAL 2 0
PARAMETER C 1.0
END

%
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Example Input File (continued)

%
node 1

scale potential 1.0
scale flow 1.0
error kcl 5e-3
error pot 5e-3
end

%
default

Gmin 0
Rmin 0

check both

error eqn kcl 5e-3
error eqn pot 5e-3
error var node 5e-3
error var flow 5e-3
error mult kcl 10.0
error mult pot 10.0
error mult node 10.0
error mult flow 10.0

scale potential 1.0
scale flow 1.0

max count 10
max int count 6

alpha init 1.0
alpha inc init .25
alpha inc min .05

diverge start 3
diverge max cnt 2
diverge error mult 10.0

waveform content max .005
waveform content nbr 2

wtype 3

nbr coef 7
nbr coef min 6
nbr coef max 14
nbr data 20

END
%
time

dt min 0.025
dt max 5.0
dt opt 0.250
dt init 1.0
dt ave 0.0
start 0.0
finish 20.0
END

%
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4.3.1 DEBUG

If DEBUG is specified without any arguments, the command is interpreted as a

multi-line command. Each of the following lines should contain the name of one of the

subroutines listed below. If the key-word OFF follows the subroutine name, the debug flag

for that subroutine is turned off. Otherwise, the debug flag for the specified routine is

turned on. The last line of the group should begin with the key-word END.

If DEBUG is specified with arguments, the command is interpreted as a single-line

command and the arguments should consist of one of the subroutines listed below and

optionally, the key-word OFF. A single line command does not have an END keyword

associated with it.

Here is a list of subroutines for which debug flags have been defined (Note: The

subroutine names are case sensitive)

init_devices

read_device_def

read_file

read_file_device

read_file_default

read_file_node

read_file_time

read_file_debug

build_system

build_system_identify

build_system_structural_jacobian

build_system_blocks

find_block

print_system_identify

write_file
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4.3.2 DEFAULT

If DEFAULT is specified without any arguments, the command is interpreted as a

multi-line command. Each of the following lines should contain one of the subordinate

commands listed below. The last line of the group should begin with the key-word END.

If DEFAULT is specified with arguments, the command is interpreted as a single-line

command and the arguments should consist of one of the subordinate commands listed

below. A single line command does not have an END keyword associated with it.

Here is a summary of the DEFAULT subordinate commands:

ALPHA Continuation Parameter Control

CHECK Error Checking Flags

DIVERGE Divergence Test Control

ERROR Default Error Levels

GMIN Default Node Leakage Conductance

MAX Maximum Iteration Counts

NBR Number of Coefficients Control

RMIN Default Node Series Resistances

SCALE Default Variable Scaling Factors

WAVEFORM CONTENT Waveform Content Limits

WTYPE Waveform Type
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4.3.2.1 DEFAULT: ALPHA

The ALPHA subordinate command specifies the parameters needed to control the

continuation parameter for nonlinear blocks.

Command Description MATLAB Variable

ALPHA INIT Value Continuation Parameter sb_alpha_init

Initial Value

ALPHA INC INIT Value Continuation Parameter sb_dalpha_init

Initial Increment

ALPHA INC MIN Value Minimum Continuation sb_dalpha_min

Parameter Increment

For a nonlinear block, the continuation parameter is initialized to the ALPHA INIT

value. The initial increment for the continuation parameter is specified by ALPHA INC

INIT. If the block fails to converge, the continuation parameter is progressively

decremented until the block converges or if convergence fails due to the difference

between the last value of the continuation parameter that converged and the present value

of the continuation parameter being less than ALPHA INC MIN. If the block converges,

the continuation parameter is incremented by ALPHA INC INIT until it equals 1.

4.3.2.2 DEFAULT: CHECK

The CHECK subordinate command determines for nonlinear blocks, whether the

equation error, the variable correction magnitude, or both should be used for the

convergence criteria.

Command Description MATLAB Variable

CHECK EQN Check only Equation Errors sb_check_eqn_err = 1

sb_check_var_err = 0

CHECK VAR Check only Variable sb_check_eqn_err = 0

Corrections sb_check_var_err = 1

CHECK BOTH Check both Equation Errors sb_check_eqn_err = 1

and Variable Corrections sb_check_var_err = 1
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4.3.2.3 DEFAULT: DIVERGE

The DIVERGE subordinate command specifies when and how to check a nonlinear

block for divergence. After DIVERGE START iterations, if the largest relative error

increases for DIVERGE MAX CNT iterations and the relative error is at least DIVERGE

ERROR MULT then the block is assumed to be diverging and the converge_failure flag

is set.

Command Description MATLAB Variable

DIVERGE START Value Number of iterations to wait sb_div_start_cnt

before testing for divergence

DIVERGE MAX CNT Value Number of iterations to sb_div_max_cnt

allow relative error to
increase befor concluding
divergence

DIVERGE ERR MULT Value Value of relative error sb_i_div_err

below which to ignore
divergence iteration count
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4.3.2.4 DEFAULT: ERROR

The ERROR subordinate command determines for nonlinear blocks, the default

maximum equation errors and variable corrections which are permissible. These default

values can be overridden for a specific node with the NODE command. When the

conituation parameter equals 1, ERROR EQN KCL is the maximum error for the node

KCL equtions and ERROR EQN POT is the maximum error for the potential difference

equations. Likewise when the continuation parameter equals 1, ERROR VAR NODE is

the maximum correction to a node potential and ERROR VAR FLOW is the maximum

correction to an import flow variable. The ERROR MULT subordinate commands are

multipliers to the above limits for continuation parameters less than 1.

Command Description MATLAB Variable

ERROR EQN KCL Value Default KCL Equation sys_kcl_err1

Maximum Error

ERROR EQN POT Value Default Potential Difference sys_var_err1

Maximum Error

ERROR VAR NODE Value Default Maximum sys_nd_err1

correction to Node
Potentials

ERROR VAR FLOW Value Default Maximum sys_fv_err1

correction to Import Flow
Variables

ERROR MULT KCL Value Multiplier to ERROR EQN sb_i_kcl_err
KCL when continuation
parameter < 1

ERROR MULT POT Value Multiplier to ERROR EQN sb_i_pot_err
POT when continuation
parameter < 1

ERROR MULT NODE Value Multiplier to ERROR VAR sb_i_nd_err
NODE when continuation
parameter < 1

ERROR MULT FLOW Value Multiplier to ERROR VAR sb_i_fv_err
FLOW when continuation
parameter < 1

Note 1: sys_xxx_err are actually arrays containing for each equation or variable, either
the default value specified here or the overriding value specified in the NODE
command.
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4.3.2.5 DEFAULT: GMIN

The GMIN subordinate command defines the default value for Gmin. Gmin is used to

modify the KCL equations to help prevent singular systems. Gmin should normally be set

to 0 unless a singularity problem exists. The value for Gmin can be overridden for a

particular node through the NODE command.

Command Description MATLAB Variable

GMIN Value Leakage Conductance to 0 sys_Gmin1

Potential

Note 1: sys_Gmin is actually an array containing the value for Gmin for each node: either
the default value specified here or the overriding value specified in the NODE
command.

4.3.2.6 DEFAULT: MAX

The MAX subordinate command determines the maximum number of

Newton-Raphson iterations for a nonlinear block before the continuation parameter is

decremented. MAX COUNT specifies the maximum number of iterations when the

continuation parameter equals 1 while MAX INT COUNT specifies the maximum

number of iterations when the continuation parameter is less than 1.

Command Description MATLAB Variable

MAX COUNT Value Maximum number of sb_maxcnt

Iterations when the
continuation parameter
equals 1

MAX INT COUNT Value Maximum number of sb_i_maxcnt

Iterations when the
continuation parameter is
less than 1
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4.3.2.7 DEFAULT: NBR

The NBR subordinate command controls the number of coefficients the waveforms

will have. NBR COEF specifies the initial number of coefficients to use. NBR COEF

MIN is the minimum number of coefficients to use while NBR COEF MAX is the

maximum number of coefficients. NBR DATA is the number of data points per

waveform used when generating plots.

Command Description MATLAB Variable

NBR COEF Value Initial number of n

coefficinets

NBR COEF MIN Value Minimum number of sb_n_min

coefficients

NBR COEF MAX Value Maximum number of sb_n_max

coefficients

NBR DATA Value Number of points per sb_n_data

waveform to use in plots.

4.3.2.8 DEFAULT: RMIN

The RMIN subordinate command defines the default value for Rmin. Rmin is used to

modify the Potential Difference equations to help prevent singular systems. Rmin should

normally be set to 0 unless a singularity problem exists. The value for Rmin can be

overridden for a particular node through the NODE command.

Command Description MATLAB Variable

RMIN Value Series Resistance for Export sys_Rmin1

Potentials

Note 1: sys_Rmin is actually an array containing the value for Rmin for each node: either
the default value specified here or the overriding value specified in the NODE
command.
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4.3.2.9 DEFAULT: SCALE

The SCALE subordinate command specifies the default scaling parameters for the

potential and flow variables. The default scaling parameters can be overridden for a

particular node through the NODE command.

Command Description MATLAB Variable

SCALE POTENTIAL Value Default scaling factor for sys_pot_scale1

Potentials

SCALE FLOW Value Default scaling factor for sys_flow_scale1

Flow Variables

Note 1: sys_pot_scale and sys_flow_scale are actually arrays containing the scaling
factors for each node: either the default values specified here or the overriding
values specified in the NODE command.

4.3.2.10 DEFAULT: WAVEFORM CONTENT

The WAVEFORM CONTENT subordinate command controls the maximum

allowable truncation error by specifying the maximum waveform content WAVE CONT

MAX for the last WAVE CONT NBR coefficients of a waveform.

Command Description MATLAB Variable

WAVE CONT MAX Value Maximum Waveform sb_max_hh
Content

WAVE CONT NBR Value Number of Coefficients to sb_nbr_hh
apply maximum to.

4.3.2.11 DEFAULT: WTYPE

The WTYPE subordinate command specifies the waveform type to use in the

simulation

Command Description MATLAB Variable

WTYPE Value Waveform Type Indicator wtype
1 Data Series
2 Fourier Series
3 Legencre Series
4 Polynomials
5 MATLAB Polynomials
6 Chebyshev Series
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4.3.3 DEVICE

DEVICE is always a multi-line command. The command must be entered in the

following format:

 DEVICE Device_Type Name

where:

Device_Type Device Type Name from device.def file.

Name Name of this particular device.

The subordinate commands for the DEVICE command are:

TERMINAL Assign Terminals to Nodes (mandatory).

PARAMETER Assign Parameter Values (optional).

STATE Assign State Initial Conditions (optional).

All of the terminals as defined in the device.def must be assigned to a node. If the

parameters or states are not assigned values, the default values specified in device.def

are used.

The last line of the command group must begin with the key-word END

4.3.3.1 DEVICE: TERMINAL

The TERMINAL subordinate command assigns a terminal to a node and must be

entered in the following format:

 TERMINAL Terminal_Name Node_Nbr

where:

Terminal_Name Terminal Name from device.def file.

Node_Nbr Serial Number of Node this terminal is attached to.

All of the terminals as defined in device.def must be attached to a node of the

system.
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4.3.3.2 DEVICE: PARAMETER

The PARAMETER subordinate command assigns a value to a parameter of the

device. If the parameter is a single value as defined in device.def then the parameter

command must be of the following format:

 PARAMETER Parameter_Name Value

where:

Parameter_Name Parameter Name from device.def file.

Value Parameter Value.

If the parameter is a matrix as defined in device.def then the parameter

command must be of the following format:

 PARAMETER Parameter_Name MATRIX

matrix_values

END

where:

Parameter_Name Parameter Name from device.def file.

matrix_values Parameter matrix. The number of rows and columns
of the matrix must be the same as specified in the
device.def file. Rows are entered one line at a
time with columns separated by spaces.

If a parameter as defined in device.def is not assigned a value, then the default

values specified in device.def is used.
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4.3.3.3 DEVICE: STATE

The STATE subordinate command assigns an initial value to a state of the device

and must be entered in the following format:

 STATE State_Name Value

where:

State_Name State Name from device.def file.

Value Initial value of state.

If a state as defined in device.def is not assigned a value, then the default

values specified in device.def is used.
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4.3.4 INCLUDE

INCLUDE is always a single-line command. The command must be entered in the

following format:

 INCLUDE File_Name

where:

File_Name Name of the file to include.

The contents of the included file are inserted at the location of the INCLUDE

command.

4.3.5 NODE

NODE is always a multi-line command. The command must be entered in the

following format:

 NODE Node_Nbr

where:

Node_Nbr Serial Number of the node.

The subordinate commands for the NODE command are:

ERROR Node Error Levels

GMIN Specify node Gmin value

NAME Assign a name to the node

RMIN Specify node Rmin value

SCALE Specify node scaling factors

The last line of the command group must begin with the key-word END
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4.3.5.1 NODE: ERROR

The ERROR subordinate command determines for nonlinear blocks, the maximum

equation errors and variable corrections which are permissible. These values override the

default values. When the conituation parameter equals 1, ERROR EQN KCL is the

maximum error for the node KCL eqution and ERROR EQN POT is the maximum error

for the potential difference equations. Likewise when the continuation parameter equals

1, ERROR VAR NODE is the maximum correction the node potential and ERROR VAR

FLOW is the maximum correction to an import flow variable. The ERROR MULT

subordinate commands of the DEFAULT command are multipliers to the above limits for

continuation parameters less than 1.

Command Description MATLAB Variable

ERROR EQN KCL Value Maximum KCL Equation sys_kcl_err1

Error

ERROR EQN POT Value Maximum Potential sys_var_err1

Difference Error

ERROR VAR NODE Value Maximum correction to sys_nd_err1

Node Potential

ERROR VAR FLOW Value Maximum correction to sys_fv_err1

Import Flow Variables
attached to this node

Note 1: sys_xxx_err are actually arrays containing for each equation or variable, either
the default value or the overriding value specified here.

4.3.5.2 NODE: GMIN

The GMIN subordinate command defines the value for Gmin. Gmin is used to modify

the KCL equation to help prevent singular systems. Gmin should normally be set to 0

unless a singularity problem exists. The value for Gmin overrides the default value.

Command Description MATLAB Variable

GMIN Value Leakage Conductance to 0 sys_Gmin1

Potential

Note 1: sys_Gmin is actually an array containing the value for Gmin for each node: either
the default value or the overriding value specified here.
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4.3.5.3 NODE: NAME

The NAME subordinate command

Command Description MATLAB Variable

NAME Node_Name Name of the Node sys_node_name1

The node name is only used to associate the node serial number to a more

understandable label. The node name is optional and does not affect computation in any

way.

Note 1: sys_node_name is actually an array containing the names of all the nodes.

4.3.5.4 NODE: RMIN

The RMIN subordinate command defines the node value for Rmin. Rmin is used to

modify the Potential Difference equations to help prevent singular systems. Rmin should

normally be set to 0 unless a singularity problem exists. The value for Rmin overrides the

default value.

Command Description MATLAB Variable

RMIN Value Series Resistance for Export sys_Rmin1

Potentials

Note 1: sys_Rmin is actually an array containing the value for Rmin for each node: either
the default value or the overriding value specified here.

4.3.5.5 NODE: SCALE

The SCALE subordinate command specifies the node scaling parameters for the

potential and flow variables. The scaling parameters override the default values.

Command Description MATLAB Variable

SCALE POTENTIAL Value Scaling factor for Node sys_pot_scale1

Potential

SCALE FLOW Value Node scaling factor for Flow sys_flow_scale1

Variables

Note 1: sys_pot_scale and sys_flow_scale are actually arrays containing the scaling
factors for each node: either the default values or the overriding values specified
here.
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4.3.6 TIME

If TIME is specified without any arguments, the command is interpreted as a

multi-line command. Each of the following lines should contain one of the subordinate

commands listed below. The last line for the section should begin with the key-word END.

If TIME is specified with arguments, the arguments should consist of one of the

subordinate commands listed below. A single line command does not have an END

keyword associated with it.

The subordinate commands for the TIME command are:

BREAK Insert Break Point

DT Time Increment Control

FINISH Ending Time of Simulation

START Starting Time of Simulation

4.3.6.1 TIME: BREAK

The BREAK subordinate command inserts a simulation break point which forces a

waveform boundary to occur at the designated time. Bracketing intervals in which a

discontinuity will occur with breakpoints can reduce the computational effort required by

WAVESIM.

Command Description MATLAB Variable

BREAK Time Break Point time sb_bp1

sb_bp_nbr

Note 1: sb_bp is actually an array of break points in chronological order. sb_bp_nbr is
the number of break points.
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4.3.6.2 TIME: DT

The DT subordinate command controls the waveform interval.

Command Description MATLAB Variable

DT MIN Value Minimum Waveform sb_dt_min

Increment

DT MAX Value Maximum Waveform sb_dt_max

Increment

DT OPTIMUM Value Optimum Waveform sb_dt_optimum

Increment

DT INITIAL Value Initial Waveform Increment sb_dt_init

DT AVE Value Minimum Time Interval of sb_dt_ave

Interest (Averaging Interval)

If the time interval is less than DT OPTIMUM, the number of coefficients is less

then the maximum and a block does not converge, the number of coefficients is increased

for the next iteration. Otherwise, if the block does not converge the time interval is

reduced.

DT AVE is the minimum time interval of interest and is used by devices to smooth

their export waveforms or to move discontinuity boundaries.

4.3.6.3 TIME: FINISH

The FINISH subordinate command specifies the ending time of the simulation.

Command Description MATLAB Variable

TIME FINISH Value Ending Time of Simulation t1

4.3.6.4 TIME: START

The START subordinate command specifies the beginning time of the simulation.

Command Description MATLAB Variable

TIME START Value Starting Time of Simulation t0
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4.4 Device Definition File Specification

The device definition file device.def contains the definitions of the device types

which can be specified in a WAVESIM Input File. The basic characteristics of the file are:

1. ASC II text files

2. Lines beginning with %, # or ! are ignored. Empty lines are ignored as well.

3. Data lines can be continued on the following line if the last characters in the line

are ... or \.

4. Commands all begin with a key-word. Key-words are case insensitive and

usually can be truncated to three letters unless a conflict with another key-word

exists.

5. Commands and their arguments may be separated by either spaces or tabs.

6. The contents of other files can be incorporated by using the INCLUDE command.

7. Single Line Commands have data arguments entered on only one line.

8. Multiple Line Commands consist of groups of subordinate commands. The group

must end with a line beginning with the key-word END.

- 127 -



Example device.def File

%
% device.def
%
% debug init_devices
debug read_device_def
%
device RESISTOR

Terminal 1 Pot V1 Import
Terminal 1 Flow I1 Export 1
Terminal 2 Pot V2 Import
Terminal 2 Flow I2 Export 1
Parameter R 1e-15
Function resistor
Structural Jacobian All

DD
DD

end
end
%
device INDUCTOR

Terminal 1 Pot V1 Import
Terminal 1 Flow I1 Export 1
Terminal 2 Pot V2 Import
Terminal 2 Flow I2 Export 1
Parameter L 1e-15
Function inductor
Structural Jacobian All

LL
LL

end
end
%
device CAPACITOR

Terminal 1 Pot V1 Export
Terminal 1 Flow I1 Export 1
Terminal 2 Pot V2 Import
Terminal 2 Flow I2 Import 1
Parameter C 1e-15
Function capacitor
Structural Jacobian All

IL
0D

end
end
%
device VDC_SOURCE

Terminal 1 Pot V1 Export
Terminal 1 Flow I1 Export 1
Terminal 2 Pot V2 Import
Terminal 2 Flow I2 Import 1
Parameter VS 1.0
Function vdc_src
Structural Jacobian All

I0
0D

end
end
%
device REFERENCE

Terminal Gnd Pot V0 Export
Terminal Gnd Flow I0 Import 0
Parameter Vref 0.0
Structural Jacobian ALL

0
end

end
%
% include load flow definitions
include loadflow.def
%
% include rotating machinery IED Models
include powersys.def
%
% include other circuit elements
include circ_elm.def
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4.4.1 DEBUG

The DEBUG command is always a single-line command and results in the display of

debug information for a specified routine during the execution of WAVESIM.

Command Description

DEBUG init_devices Print Info on Initial System Parameters

DEBUG read_device_def Print Info on what is read from device.def

4.4.2 DEVICE

DEVICE is always a multi-line command. The command must be entered in the

following format:

DEVICE Device_Type

where:

Device_Type Device Type Name (must be unique)

The Device Type Name is used to correlate a given device in an input file with the

properties of the device as specified here. The subordinate commands for DEVICE are:

TERMINAL Specify Terminal Variable Properties

PARAMETER Specify Parameters

STATE Specify States

FUNCTION Specify MATLAB function

STRUCTURAL JACOBIAN Specify Structural Jacobian

The last line of the command group must begin with the key-word END
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4.4.2.1 DEVICE: TERMINAL

The TERMINAL subordinate command defines the properties of the variables

associated with a terminal. If the Terminal is a normal terminal, both the flow and

potential variables need definitions. Flow variables also require a KCL group number

KCL which corresponds to the group of terminals for which KCL can be written internally

to the device. If the flow variable does not belong to a KCL group, its value should be 0.

Variable are IMPORT is they are a resource to the device and are EXPORT if they are a

product of the device. The total number of export variables associated with normal nodes

must equal the total number of import variables associated with normal nodes.

Normal Node potentials are defined by either

TERMINAL Terminal_Name POTENTIAL Variable_Name EXPORT

or

TERMINAL Terminal_Name POTENTIAL Variable_Name IMPORT

Normal Node flows are defined by either

TERMINAL Terminal_Name FLOW Variable_Name EXPORT KCL

or

TERMINAL Terminal_Name FLOW Variable_Name IMPORT KCL

Information Node potentials are defined by either

TERMINAL Terminal_Name INFORMATION Variable_Name EXPORT

or

TERMINAL Terminal_Name INFORMATION Variable_Name IMPORT

Where

Terminal_Name One word name for Terminal

Variable_Name One word name for Variable

KCL KCL Group Number (0 if none)
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4.4.2.2 DEVICE: PARAMETER

The PARAMETER subordinate command defines the parameters of the device and

optionally, declares the default values for the parameters. Parameters can either be single

valued or a matrix. A single valued parameter is defined by:

PARAMETER Parameter_Name Default_Value

where

Parameter_Name One word name for Parameter

Default_Value Optional Default Value for Parameter

Matrix parameters for which which no default values are provided are defined by:

PARAMETER Parameter_Name MATRIX Nbr_Row Nbr_Col

where

Nbr_Row Number of rows in Matrix
0 should never be used
-1 indicates variable dimensioned

Nbr_Col Number of columns in Matrix
0 should never be used
-1 indicates variable dimensioned

Matrix parameters for which which default values are provided are defined by:

PARAMETER Parameter_Name MATRIX Nbr_Row Nbr_Col

DEFAULT

Default_Matrix

END

where

Default_Matrix Default Matrix values, Each matrix row should
be entered one line at a time with columns
separated by spaces.
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4.4.2.3 DEVICE: STATE

The STATE subordinate command defines the states of the device and optionally,

declares the default initial values for the states. States are defined by:

STATE State_Name Default_Value

where

State_Name One word name for State

Default_Value Optional Default Initial Value for State

4.4.2.4  DEVICE: FUNCTION

The FUNCTION subordinate command is mandatory and defines the MATLAB

function which defines the device constitutive equations. The MATLAB function is

specified by:

FUNCTION MATLAB_Function

where

MATLAB_Function MATLAB Function name
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4.4.2.5 DEVICE: STRUCTURAL JACOBIAN

The STRUCTURAL JACOBIAN subordinate command defines the structural

jacobian matrix of the device for 1 or for all of the waveform types. The structural

jacobian for all waveform types is specified by:

STRUCTURAL JACOBIAN ALL

Structural_Jacobian

END

where

Structural_Jacobian Structural Jacobian Matrix. The Rows
correspond to Export Variables ordered
according to the order of definition. Similarly,
the Columns correspond to Import Variables
ordered according to the order of definition.
The elements are Structural Jacobian Codes
detailed below.

The structural jacobian for one particular waveform type is specified by:

STRUCTURAL JACOBIAN Waveform_Type

Structural_Jacobian

END

where

Waveform_Type Waveform Type Code the structural jacobian is
defined for
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Structural Jacobian Codes

Code Type of Matrix

0 Zero Matrix (all elements are always zero)

I Identity Matrix (always the identity matrix)

D Diagonal Matrix (always a linear main diagonal matrix)

L Linear Matrix (The elements are always constant)

A Nonlinear AC Matrix (see Note 1)

N Nonlinear Matrix (The elements may not be constants)

U Unknown (The dependence is unknown (treat as nonlinear))

Note 1: An AC Matrix is one for which the constant component of the export variable
depends only on the constant component of the import variable. The other
components of the export variable can not depend on the constant component of the
import variable but are not restricted in any other way.

Waveform Type Codes

Waveform Type Code

Undefined 0

Data Series 1

Fourier Series 2

Legendre Series 3

Polynomials 4

Matlab Polynomials 5

Chebyshev Series 6
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4.4.3  INCLUDE

INCLUDE is always a single-line command. The command must be entered in the

following format:

 INCLUDE File_Name

where:

File_Name Name of the file to include.

The contents of the included file are inserted at the location of the INCLUDE

command.
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4.5 Adding devices

Adding New devices to WAVESIM requires the creation of a MATLAB M-file

defining the device constitutive equations and the addition of an entry in the device.def

file.

4.5.1 MATLAB M-FILE

Creating a MATLAB M-FILE for generating a new device requires adherence to a

strict function argument list format. The following header indicates the format required by

WAVESIM:

function [e,jacob,s1,tt1]=function1(stype,i,par,mpar12,mpar22,s0,tt,alpha)
%
%  FUNCTION
%
%  VERSION 2.5 of 19 April 1991
%  (C) Copyright 1990, 1991  by Norbert H. Doerry
%
%  [e , jacob, s1, tt1] = function(stype,i,par,s0,tt,alpha)
%
%  FUNCTION creates the values and jacobian matrix for a FUNCTION
%
%
% stype = 1 data points
%       = 2 fourier series
%       = 3 legendre series
%       = 4 polynomial
%       = 5 MATLAB Polynomials
%       = 6 chebyshev series
%
% i     = [i1 i2 ...] where
%           i1, i2, ... are column vectors of import variables
%
% par   = [p1 p2 ...] where
%                            p1  = parameter_1
%                            p2  = parameter_2
%                            ...
%
% mpar1 = matrix parameter parameter_M1
% mpar2 = matrix paraemter parameter_M2
%
% s0    = [S0_1 S0_2 ...] where
%                            S0_1  = state_1 value at t0
%                            S0_2  = state_2 value at t0
%                            ...
%
% tt    = [t0 t1 dtave] where
%              t0     = initial time of the interval
%                 t1     = final time of the interval
%              dtave  = averaging increment
%
% alpha = continuation parameter
%
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% e     = [e1 e2 ...] where
%           e1, e2, ... are column vectors of export variables
%
% jacob = Jacobian matrix of e with respect to i
%
% s1    = [S1_1 S1_2 ...] where
%                            S1_1  = state_1 value at t1
%                            S1_2  = state_2 value at t1
%                            ...
%
%
% tt1   = [nt1 ntt] where
%              nt1  = recommended recomputation time this interval
%              ntt  = recommended ending time next interval
%

Note 1: function is the name of the function defining the device. The MATLAB M-FILE
should be called function.m.

Note 2: mpar1, mpar2, etc. are only specified if the device as defined in device.def
has matrix parameters.
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Example MATLAB M-File

function [e , jacob , s1, tt1] = resistor(stype,i,par,s0,tt,alpha)
%
% RESISTOR
%
% VERSION 1.6 of 25 February 1991
% (C) Copyright 1990,1991 by Norbert H. Doerry
%
% [e , jacob, s1, tt1] = resistor(stype,i,par,s0,tt,alpha)
%
% resistor creates the values and jacobian matrix for a resistor
%
%
% stype = 1 data points
% = 2 fourier series
% = 3 legendre series
% = 4 polynomial
%
% i = [v1 v2] where v1 and v2 are column vectors
% par = [R] where R is the resistance
% s0 = []
% tt = [t0 t1 dt]
% t0 = initial time of the interval
% t1 = final time of the interval
% dt = averaging time interval
% alpha = continuation parameter
%
% e = [i1 i2] where i1 and i2 are column vectors
% jacob = Jacobian matrix of e with respect to i
% s1 = []
% tt1 = [nt1 ntt] where
% nt1 recommended recomputation time this interval
% ntt recommended ending time next interval
%

% structural jacobian
%
% D D
% D D
%
n = size(i);
n(2) = [];
t0 = tt(1);
t1 = tt(2);
dt = tt(3);
%
tt1 = [t1 t0];
%
R = par(1);
%
s1 = [];
%
v1 = i(:,1);
v2 = i(:,2);
%
i1 = (v1 - v2) / R;
i2 = - i1;
%
%
e = [i1 i2];
%
%
ii = eye(n);
%
jacob = [ ii / R -ii / R ; - ii / R ii / R ];
%
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4.5.2 device.def File

A DEVICE entry must be made in the device.def file as described in a previous

section. Here is an example of the entry made for the resistor:

%
DEVICE RESISTOR
%

TERMINAL 1 POTENTIAL V1 IMPORT
TERMINAL 1 FLOW II EXPORT 1
TERMINAL 2 POTENTIAL V2 IMPORT
TERMINAL 2 FLOW I2 EXPORT 1
PARAMETER R 1e-15
FUNCTION resistor
STRUCTURAL JACOBIAN ALL

DD
DD

END
END

Note: a device can be have multiple entries in device.def to reflect different

default state initial values and default parameter values. For example, one may desire to

create a model of a 1000 ohm resistor:

%
DEVICE 1K_RESISTOR
%

TERMINAL 1 POTENTIAL V1 IMPORT
TERMINAL 1 FLOW II EXPORT 1
TERMINAL 2 POTENTIAL V2 IMPORT
TERMINAL 2 FLOW I2 EXPORT 1
PARAMETER R 1000
FUNCTION resistor
STRUCTURAL JACOBIAN ALL

DD
DD

END
END

In this manner, one can develop devices which reflect the specific operating

parameter of a particular model. A Gas Turbine model for example, could be called

GT_501K-17 and have all the parameters prespecified for an Allison 501K-17 Gas

Turbine.
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4.6 Adding Waveform Types

Adding a new waveform type requires:

1. Assignment of a waveform type code.

2. Writing MATLAB M-File functions for converting to and from the other

waveform types.

3. Modification of wconvert.m

4. Writing MATLAB M-FILE functions for accomplishing the waveform

operations required by the devices

5. Modificaiton of wfunction.m files
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4.6.1 Conversion M-Files

Here is an example of a conversion M-File for converting a Legendre Series into a

Polynomial:

function [poly, jacob] = leg_poly(leg,n)
%
% [poly, jacob] = leg_poly(leg,n)
%
% Norbert H. Doerry
% Revision 1.1 21 November 1990
%
% LEG_POLY converts a Legendre Series to a Normal Polynomial
% leg = vector of Legendre Series Coefficients in ascending
% order
% n = size of polynomial array to create
%
% poly = answer
% jacob = partial derivative of poly wrt leg
%

nl = size(leg);
nl(2) = [];
%
if n <= 0
n2 = nl;
else
n2 = n;
end
%
% build the jacobian
%
jacob = zeros(n2,nl);
%
if nl > n2
nn = n2;
else
nn = nl;
end
%
for i=1:nn
jacob(1:i,i) = legendre(i-1);
end

%
poly = jacob * leg;
%
%
%

- 141 -



Note that a jacobian matrix must be specified for each result with respect to each

argument. Here is the current version of wconvert.m which is the normal method for

accessing the conversion routines:

function [w2,jacob] = wconvert(w1,n,s1,s2)
%
% WCONVERT
%
% VERSION 1.3 of 26 March 1991
% (C) Copyright 1990.1991 by Norbert H. Doerry
%
% [w2,jacob] = wconvert(w1,n,s1,s2)
%
%
% WCONVERT converts a waveform of one type to another type and
% also returns the jacobian of the conversion:
%
% w = input waveform
% n = number of points in output waveform
%
% s1 = type of input waveform
% = 1 data points
% = 2 fourier series
% = 3 legendre series
% = 4 polynomial
% = 5 for matlab polynomial (not implemented yet)
% = 6 chebyshev series
%
% s2 = type of output waveform
%
%

n1 = size(w1);
n1(2) = [];
if n < 1
n2 = n1;

else
n2 = n;

end
%
%
if s1 < 1 | s1 > 6
’Illegal waveform type’
s1
return;

end
if s2 < 1 | s2 > 6
’Illegal waveform type’
s2
return;

end
if s1 == 5 | s2 == 5
’Illegal waveform type’
s2
return;

end
%
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%
if s1 == 1
if s2 == 1

[w2, jacob] = datadata(w1,n2);
return;

elseif s2 == 2
[w2, jacob] = datafour(w1,n2);
return;

elseif s2 == 3
[w2, jacob] = data_leg(w1,n2);
return;

elseif s2 == 4
[w2, jacob] = datapoly(w1,n2);
return;

else
[w2, jacob] = datacheb(w1,n2);
return;

end

%
elseif s1 == 2
if s2 == 1

[w2, jacob] = fourdata(w1,n2);
return;

elseif s2 == 2
[w2, jacob] = fourfour(w1,n2);
return;

elseif s2 == 3
[w2, jacob] = four_leg(w1,n2);
return;

elseif s2 == 4
[w2, jacob] = fourpoly(w1,n2);
return;

else
[w3, j3] = fourpoly(w1,n2);
[w2, jj] = polycheb(w3,n2);
jacob = jj * j3;
return;

end

%
elseif s1 == 3
if s2 == 1

[w2, jacob] = leg_data(w1,n2);
return;

elseif s2 == 2
[w2, jacob] = leg_four(w1,n2);
return;

elseif s2 == 3
[w2, jacob] = leg_leg(w1,n2);
return;

elseif s2 == 4
[w2, jacob] = leg_poly(w1,n2);
return;

else
[w2, jacob] = leg_cheb(w1,n2);
return;

end

%
elseif s1 == 4
if s2 == 1

[w2, jacob] = polydata(w1,n2);
return;

elseif s2 == 2
[w2, jacob] = polyfour(w1,n2);
return;

elseif s2 == 3
[w2, jacob] = poly_leg(w1,n2);
return;

elseif s2 == 4
[w2, jacob] = polypoly(w1,n2);
return;

else
[w2, jacob] = polycheb(w1,n2);
return;

end
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else
if s2 == 1

[w2,jacob] = chebdata(w1,n2);
return;

elseif s2 == 2
[w3,j3] = chebpoly(w1,0);
[w2,jj] = polyfour(w3,n2);
jacob = jj * j3;
return;

elseif s2 == 3
[w2,jacob] = cheb_leg(w1,n2);
return;

elseif s2 == 4
[w2,jacob] = chebpoly(w1,n2);
return;

else
[w2,jacob] = leg_leg(w1,n2);
return;

end
end
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4.6.2 Waveform Functions

Waveform functions are defined in a similar manner to the conversion files. Here is

an example of a MATLAB M-File for integrating a polynomial:

function [p2 , jacob] = poly_int(p1,n,c)
%
%
% [p2 , jacob] = poly_int(p1,n,c)
%
% Norbert H. Doerry
% Revision 1.0 of 6 December 1990
%
% p1 = input polynomial
% n = number of points in p2
% c = integration constant
%
% p2 = integeral of p1
% jacob = partial of p2 with respect to p1
%
%
% POLY_INT integrates a given polynomial and converts the
% result to another polynomial of size n
%

%
n1 = size(p1);
n1(2) = [];
%
% Error checking
%
if n < 2
n2 = n1;

else
n2 = n;

end
%
if n1 < 1
p2 = [];
return;
end

%
% calculate the integration matrix
%
j1 = zeros(n1+1,n1);
%
for i = 1 : n1
j1(i+1,i) = 1 / i;

end
%
% xx is (-1)^(n-1)
%
xx = ones(1,n2);
for i = 2 : n2
xx(1,i) = - xx(1,i-1);

end

%
% calculate the indefinite integral of the polynomial
%
pi1 = j1 * p1;
%
% convert to a polynomial of the right size
%
[p2,j2] = polypoly(pi1,n2);
j3 = j2 * j1;
%
% convert to a definite integral by adding the constant of
% integration and subtracting the value of the indefinite
% integral at x = -1
%
jacob = j3 - [xx * j3 ; zeros(n2-1,n1)];
p2(1,1) = p2(1,1) - xx * j3 * p1 + c(1,1);
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Normally, a user would call w_int to integrate a waveform:

function [w2 , jacob] = w_int(w1,n,s1,c)
%
% W_INT
%
% Version 1.2 of 19 April 1991
% (C) Copyright 1991 by Norbert H. Doerry
%
% [w2, jacob] = w_int(w1,n,s1,c)
%
% W_INT integrates a waveform and returns the result into a waveform of
% the same type but of possible different length
%
% w1 = input waveform
% n = number of points in output waveform
% s1 = type of waveform
% = 1 data points
% = 2 fourier series
% = 3 legendre series
% = 4 polynomial
% = 5 for matlab polynomial
% = 6 for chebyshev series
%
% c = constant of integration
%
% w2 = waveform which is integral of w1
% jacob = jacobian of w2 with respect to w1

n1 = size(w1);
n1(2) = [];
if n < 1
n2 = n1;

else
n2 = n;

end
%
% check for illegal waveform type
%
if s1 < 1 | s1 > 6
’Illegal waveform type’
s1
return;
end

if s1 == 1
[w2 , jacob] = data_int(w1,n2,c);

%
elseif s1 == 2
[w2 , jacob] = four_int(w1,n2,c);

%
elseif s1 == 3
[w3, j3] = leg_poly(w1,n1);
[w4, j4] = poly_int(w3,n2,c);
[w2, j2] = poly_leg(w4,n2);
jacob = j2 * j4 * j3;

%
elseif s1 == 4
[w2 , jacob] = poly_int(w1,n2,c);

%
elseif s1 == 5
[w3, j3] = mplypoly(w1,n1);
[w4, j4] = poly_int(w3,n2,c);
[w2, j2] = polymply(w4,n2);
jacob = j2 * j4 * j3;

%
elseif s1 == 6
[w3, j3] = chebpoly(w1,n1);
[w4, j4] = poly_int(w3,n2,c);
[w2, j2] = polycheb(w4,n2);
jacob = j2 * j4 * j3;

%
else
’error’

end
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Notice how the waveform conversion routines are used to implement waveform

operations which have not yet been defined for a given waveform type.
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Chapter 5 Simulation Results

As a demonstration of the capabilities of WAVESIM, the results of three simulations

are presented here. While these simulations are relatively simple, they include the important

features of more difficult simulations, yet are not so complicated as to be unverifiable. The

first simulation of a simple electical circuit containing only linear devices verifies the ability

of WAVESIM to construct a viable system and limit truncation error by controlling the

waveform interval and number of coefficients. The second simulation increases the

complexity by including a nonlinear device and provides a good test of the Newton-Raphson

solver. The third and final simulation demonstrates the use of a continuation parameter to

improve the region of convergence of the simulation.
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5.1 Linear Electrical Circuit

To demonstrate WAVESIM’s ability to solve linear circuit problems, the circuit

shown in figure 5.1-1 was simulated. Initially, both capacitors have zero charge and the

inductor currents are zero as well. The transients of the capacitor voltages and current are

shown in figure 5.1-2. The simulation was conducted using Legendre Series with the 20

second simulation time split up among 23 intervals. Eleven intervals were rejected due to

excessive truncation error.

Figure 5.1-1: Linear Electrical Circuit: Schematic

The results shown in figure 5.1-2 are identical (to working precision) to an analytic

solution of the circuit.

Figure 5.1-2: Linear Electrical Circuit: Simulation Results
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The input file specifying the system is given by:

Input File for Linear Electrical Circuit

%
% rcrc.in
%
device VDC_SOURCE Vs

TERMINAL 1 1
TERMINAL 2 0
PARAMETER VS 1.0
END

%
device RESISTOR R1

TERMINAL 1 1
TERMINAL 2 2
PARAMETER R 0.1
END

%
device RESISTOR R2

TERMINAL 1 2
TERMINAL 2 3
PARAMETER R 1.0
END

%
device INDUCTOR L1

TERMINAL 1 2
TERMINAL 2 0
PARAMETER L 1.0
END

%
device INDUCTOR L2

TERMINAL 1 3
TERMINAL 2 0
PARAMETER L 1.0
END

%
device CAPACITOR C1

TERMINAL 1 2
TERMINAL 2 0
PARAMETER C 1.0
END

%
device CAPACITOR C2

TERMINAL 1 3
TERMINAL 2 0
PARAMETER C 1.0
END

%

%
default
 Gmin 0

Rmin 0
rimport NO
check both
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error eqn kcl 5e-3
error eqn pot 5e-3
error var node 5e-3
error var flow 5e-3
error mult kcl 10.0
error mult pot 10.0
error mult node 10.0
error mult flow 10.0
max count 10
max int count 6
alpha init 1.0
alpha inc init .25
alpha inc min .05
alpha inc max .50
diverge start 3
diverge max cnt 2
diverge error mult 10.0
waveform content max .001
waveform content nbr 2
range max .005
scale potential 1.0
scale flow 1.0
stype 3
nbr coef 7
nbr coef min 6
nbr coef max 14
nbr data 20

END
%

%
time

dt min .01
dt max 2.0
dt opt .250
dt init .5
dt ave 0.0
start 0.0
finish 20.0
END

%
plot

potential R1 2
node 3
flow C2 1
END

Figure 5.1-3 shows the time increment and number of coefficients used for each of the

intervals. Once the transients start to decay, the number of coefficients are decreased to the

minimum allowed.
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Figure 5.1-3 Truncation Error Control

Interval Ending Time (sec) Number of
Coefficients

1 0.25 7
2 0.50 7
3 0.75 7
4 1.25 7
5 2.25 7
6 3.25 6
7 4.25 6
8 4.75 6
9 5.25 6
10 6.25 6
11 7.25 6
12 8.25 6
13 8.75 6
14 9.25 6
15 10.25 6
16 11.25 6
17 12.25 6
18 14.25 6
19 15.25 6
20 16.25 6
21 17.25 6
22 18.25 6
23 20.00 6
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5.2 Nonlinear Electrical Circuit

To demonstrate WAVESIM’s ability to solve nonlinear circuit problems, the circuit

shown in figure 5.2-1 was simulated. Initially, the inductor current is zero. As the inductor

current builds up, its voltage is clamped by the diode to one diode drop above 1 volt and its

current ramps up almost linearly. When the inductor voltage falls far enough to turn the

diode off, the current and voltage both show a normal exponential transient behavior.

Figure 5.2-2 shows the inductor voltage and current as a function of time.

Figure 5.2-1 Nonlinear Electrical Circuit: Schematic

The results shown in figure 5.2-2 were calculated using Legendre Series over seven

time intervals. Five additional intervals were rejected due to excessive truncation error.

These results match closely an analytic solution to the circuit.
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Figure 5.2-2 Nonlinear Electrical Circuit: Simulation Results

The input file specifying the system is given by:

Input File for Nonlinear Electrical Circuit

%
% rd.in
%
device VDC_SOURCE Vs1

TERMINAL 1 1
TERMINAL 2 0
PARAMETER VS 10.0

END
%

device RESISTOR R1
TERMINAL 1 1
TERMINAL 2 2
PARAMETER R 1.0
END

%

device INDUCTOR L1
TERMINAL 1 2
TERMINAL 2 0
PARAMETER L 1.0
END

%

device DIODE1 D1
TERMINAL 1 2
TERMINAL 2 3
END

%
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device VDC_SOURCE Vs2
TERMINAL 1 3
TERMINAL 2 0
PARAMETER VS 1.0
END

%
default

Gmin 0
Rmin 0
rimport NO
check both
error eqn kcl 5e-3
error eqn pot 5e-3
error var node 5e-3
error var flow 5e-3
error mult kcl 10.0
error mult pot 10.0
error mult node 10.0
error mult flow 10.0
max count 10
max int count 6
alpha init 1.0
alpha inc init .25
alpha inc min .05
alpha inc max .50
diverge start 3
diverge max cnt 2
diverge error mult 10.0
waveform content max .001
waveform content nbr 2
range max .005
scale potential 1.0
scale flow 1.0
wtype 3
nbr coef 7
nbr coef min 7
nbr coef max 10
nbr data 20
END

%

time
dt min .01
dt max 5.0
dt opt .250
dt init 5
dt ave .01
start 0.0
finish 10.0
END

%
plot

potential R1 2
flow L1 1
END
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Figure 5.2-3 Truncation Error Control

Interval Ending Time (sec) Number of

Coefficients

1 5.00 7
2 6.25 7
3 6.4063 7
4 6.7188 7
5 7.3438 7
6 8.5938 7
7 10.0 7
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5.3 Nonlinear Mechanical System

To demonstrate the ability of WAVESIM to use continuation parameters in simulating

nonlinear mechanical systems, a mechanical power train was modelled. The acceleration

characteristic of a ship was determined for a propeller rotating at a constant speed. Figure

5.3-1 shows a schematic diagram of the system.

Figure 5.3-1 Nonlinear Mechanical System: Schematic

The propeller model is described in Appendix F-8 while the ship dynamics model is

described in Appendix F-9. Figure 5.3-2 shows the parametric curves used for CT() and

CQ(). This data is for a three bladed propeller with an expanded area ratio of .5 and an H/D

ratio of .6 [81].

Figure 5.3-3 shows the Residual drag coefficient used in the ship dynamics model.

This data is from the Taylor Standard Series for a hull with beam to draft ratio of 3.0,

Prismatic Coefficient (Cp) of .68, and Volumetric coefficient of 0.002. The Frictional Drag

Coeffient was calculated using the standard ITTC Line:

Cf(Re) =
.075

(log10(Re) − 2)2
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Figure 5.3-2 Nonlinear Mechanical System: Propeller Characteristics

Figure 5.3-3 Nonlinear Mechanical System: Drag Coefficient
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The input file specifying the system is given by:

Input File for Nonlinear Mechanical System

%
% shipmo1.in
%
% Model of a prime mover attached to prop going to the sea
%
device NODE_REF GT1
TERMINAL 1 1
PARAMETER Vref 5.0
END

%
device PROP1 prop
TERMINAL SHAFT 1
TERMINAL WATER 2
PARAMETER D 10.0
PARAMETER w 0.0

end

%
% parameters are rough ones from Sue B Gail
%
device SHIPDYN1 ship
TERMINAL WATER 2
PARAMETER L 100
PARAMETER A 3300
PARAMETER M 15000000
PARAMETER Madd 1.05
PARAMETER Ca 0.0004
STATE Us 0

end

%
Node 1
SCALE POTENTIAL 1
SCALE FLOW 1e-4
NAME Propeller_Shaft
Gmin 1
END

Node 2
SCALE POTENTIAL 1
SCALE FLOW 1e-4
NAME Hydrodynamic_U_force
END

%
default

Gmin 0
Rmin 0
rimport NO
check eqn
error eqn kcl 1e-2
error eqn pot 1e-2
error var node 1e-2
error var flow 1e-2
error mult kcl 10.0
error mult pot 10.0
error mult node 10.0
error mult flow 10.0
max count 10
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max int count 6
alpha init 0.5
alpha inc init .25
alpha inc min .05
alpha inc max .50
diverge start 3
diverge max cnt 2
diverge error mult 10.0
waveform content max .005
waveform content nbr 2
range max .005
scale potential 1.0
scale flow 1.0
stype 3
nbr coef 7
nbr coef min 6
nbr coef max 10
nbr data 20
END

%
time

dt min .25
dt max 5.0
dt opt 1.0
dt init 2.0
dt ave 0.0
start 0.0
finish 7.25
END

%
plot
% node 1 converted to RPM
% node 2 converted to Knots (more or less)
%

node 1 9.5492966
node 2 1.8
flow ship WATER 1e-5
flow prop SHAFT 1e-5
END

The results of the simulation using Legendre Series are shown in figure 5.3-4. The

simulation was broken into 24 intervals shown in figure 5.3-5. An additional 25 intervals

were rejected due to excessive truncation error. For each iteration, the continuation

parameter was initially set to 0.5. This value helped assure the initial value of 0 was within

the convergence region of the nonlinear blocks. While 0.5 was suitable for most iterations,

several required the continuation parameter be decremented further to achieve convergence.
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Figure 5.3-4 Nonlinear Mechanical System: Simulation Results

As expected, the force on the propeller is greatest during the acceleration of the ship.

As the ship accelerates, the increased forward velocity on the ship results in smaller torques

and forces. In reality it is doubtful the motor would be capable of maintaining a constant

RPM during the acceleration phase.
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Figure 5.3-5 Truncation Error Control

Interval Ending Time (sec) Number of
Coefficients

1 1 7
2 1.5 8
3 1.75 10
4 2.25 10
5 2.5 10
6 2.75 10
7 3.0 10
8 3.25 10
9 3.5 10
10 3.75 10
11 4.0 10
12 4.25 10
13 4.5 10
14 4.75 10
15 5.0 10
16 5.25 10
17 5.5 10
18 5.75 10
19 6.0 10
20 6.25 10
21 6.5 10
22 6.75 10
23 7 10
24 7.25 10
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Chapter 6 Conclusions

In its present form, WAVESIM is ideally suited for testing numerical algorithms.

While it is capable of simulating large systems, the interpretive nature of MATLAB is not

numerically efficient enough for serious simulations. Careful development of a simulation

environment based on the techniques explored in WAVESIM should prove effective in

solving tightly coupled multirate systems of lumped parameter models.

The simulation environment described in this thesis should be considered a framework

for future developments. Many improvements are possible and desirable. In particular, the

following areas need further attention:

Truncation Error Control

The present method for controlling truncation error is heuristic and should be

examined for improvement. Truncation Error propagation should be examined and

given a theoretical basis.

Discontinuity Time Prediction

The accuracy of the methods used in WAVESIM depend partly on the ability to

predict discontinuities and force them to occur on time interval boundaries. The

methods used in current models are crude and should be replaced with more robust and

accurate methods.

Stability Analysis

WAVESIM presently does not perform any stability analysis. Since WAVESIM

abandons the standard state space representation of the system, determining the

eigenstructure of the system is not easy. A stability measure based on the

characteristics of individual devices would fit well with the structure of WAVESIM

and would be quite useful in the design of distributed controls.

Smoothing Operation

The smoothing operator for removing the effects of high frequency

discontinuities needs to be examined to improve its efficiency. How long to make the

smoothing interval is a question which has not been satisfactorily answered.

Partitioning and Relaxation
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The approach WAVESIM uses for developing the set of system equations is

ideally suited for use with relaxation methods if the system is weakly coupled. An

extension to the structural Jacobian to include matrix norms would greatly simply the

task of partitioning the system into a set of weakly coupled blocks which internally are

strongly coupled. Each individual block would be solved using Newton-Raphson with

the system solved using a relaxation technique. Unfortunately, the process of

constructing a system matrix of norms from device matrix norms is presently not

possible because arithmetic operators for matrix norms have not been identified.

Overall, WAVESIM has been very successful in developing the algorithms for building

systems in terms of device functions, treating waveforms as an abstract data type, and

employing the structural Jacobian matrix to reduce the system into a sequence of smaller

blocks. Much work remains, but the foundation of a waveform based simulator capable of

handling tightly coupled multirate simulation problems is contained within WAVESIM.

- 164 -



References

Chapter One: Introduction

[1] Antognetti, P., D. O. Pederson, and H. de Man, Computer Design Aids for VLSI
Circuits, Martinus Nijhoff Publishers, 1986.

[2] Carlsen, K., E. H. Lenfest, J. J. LaForest, MANTRAP Machine and Network
Transients Program, 1976 Power Industry Computer Applications Conference, pp.
144-150.

[3] Casey, John P., AC Electric Drive Machinery Design, Presented at the 1990
Chesapeake Marine Engineering Symposium, The Society of naval Architects and
Marine Engineers, Arlington, VA, March 14, 1990.

[4] Hatchtel, G. D., et. al., The Sparse Tableau Approach to Network Analysis and
Design, IEEE Transactions on Circuit Theory, Vol. CT-18, Jan. 1971, pp. 101-108.

[5] Hindmarsh, Alan C., LSODE and LSODI, Two new Intitial Value Ordinary
Differential Equation Solvers, Lawrence Livermore Laboratory.

[6] Ho, C.W., et. al., The Modified Nodal Approach to Network Analysis, IEEE
Transactions on Circuits and Systems, vol. CT-18, Jan 1971, pp. 101-108.

[7] Hultgren, Kenneth J, VSCF Cycloconverter Power Equipment A Versatile
Technology for Wide Range PDSS. Presented at the 1990 Destroyer, Cruiser &
Firgate Technology Symposium, The American Society of Naval Engineers, Biloxi,
MS, September 27, 1990.

[8] Ilic-Spong, Marija and John Zaborsky, A Different Approach to Load Flow, IEEE
Transactions on PAS, Jan 1982, pp. 168-179.

[9] Larsen, E. V. and W. W. Price, MANSTAB/POSSIM Power System Dynamic Analysis
Programs - A New Approach Combining Nonlinear Simulation and Linearized
State-Space/Frequency Domain Capabilities, 1977 Power Industry Computer
Applications Conference, pp. 350-357.

[10] Luini, James F., Richard P. Shulz, and Anne E. Turner, A Digital Computer Program
for Analyzing Long Term Dynamic Response of Power Systems, EPRI Research
Project 90-7.

[11] Meyer, W. Scott, Machine Translation of an Electromagnetic Transients Program
(EMTP) Among Different Digital Computer Systems, 1977 Power Industry
Computer Applications Conference, pp. 272-277.

[12] Mitchell and Gauthier Associates, Advanced Continuous Simulation Language
(ACSL) User Guide / Reference Manual, Concord, MA 1975.

[13] Prasad, N. R., and R. D. Dunlop, Three Phase Simulation of the Dynamic Interaction
Between Synchronous Generators and Power Systems Using the Continuous
Systems Modelling Program (CSMP III), IEEE Transactions of Power Apparatus
and Systems, Vol PAS-94 No. 3, May/June 1975, pp. 1042-1049.

[14] Stevenson, William, Elements of Power System Analysis, McGraw-Hill Book
Company, 1962.

[15] Weeks, W.T., et al., Algorithms for ASTAP - A Network Analysis Program, IEEE
Trans. on CT., Nov. 1973, pp. 628-634.

- 165 -



[16] White, J., A. S. Vincentelli, F. Odeh, and A. Ruehli, Waveform Relaxation: Theory
and Practice, Transactions of the Society for Computer Simulation, Volume 2,
Number 1, 1985, pp. 95-132.

Chapter Two: Shipboard Electric Systems

[17] Department of Defense, Interface Standard for Shipboard Systems, Section 300A,
Electric Power, Alternating Current (Metric), MIL-STD-1399(NAVY)
13 October 1987.

[18] Departemnt of the Navy, General Specifications for Ships of the United States Navy,
Section 300, General Requirements for Electric Plant, Naval Sea Systems
Command, 1987.

[19] Department of the Navy, General Specifications for Ships of the United States Navy,
Section 320, General Requirements for Electric Power Distribution Systems,
Naval Sea Systems Command, 1987.

[20] Ballard, Michael A, Impacts of Electric Propulsion Systems on Submarine Design,
Naval Engineer and Electrical Engineering and Computer Science Master’s thesis,
MIT, 1989

[21] Davis, James Clinton, A Comparative Study of Various Electric Propulsion Systems
and Their Impact on a Nominal Ship Design, Naval Engineer and Electrical
Engineering and Computer Science Master’s thesis, MIT, 1987.

[22] Doerry, Norbert H., Shipboard Electrical Distribution Systems, Term paper for MIT
course 6.683, 22 May 1989.

[23] Graham, C., R. Hamly, J. Reed, Simplified Math Model for the Design of Naval
Frigates, MIT Department of Ocean Engineering, September 1986.

[24] Jolliff, James V., Dr., and Dr. David L. Greene, Advanced Integrated Electric
Propulsion A Reality of the Eighties, Naval Engineers Journal, April 1982, pp.
232-252.

Chapter Three: Framework

[25] Abelson, Harold, The Bifurcation Interpreter: A step towards the automatic
analysis of dynamical systems, A.I. Memo 1174, September 1989, MIT.

[26] Abelson, Harold, Micahel Eisenberg, Mathew Halfant, Jacob Katzenelson, Elisha Sacks,
Gerald Jay Sussman, Jack Wisdom, and Ken Yip, Intelligence in Scientific
Computing, A. I. Memo 1094, November 1988, MIT.

[27] Akimoto, Yoshiakira, Hideo Tanaka, Hiromi Ogi, Hisao Taoka and Toshiaki Sakaguchi,
Distributed Simulator for Power System Analysis using a Hypercube Computer,
Proceedings of the Tenth Power Systems Computation Conference, Graz, Austria,
19-24 August 1990. pp. 742-749.

[28] Braham, Rafik and James O. Hamblen, Simulation of Large Integrated Circuits,
Transactions of teh Society for Computer Simulation, Volume 5, Number 4, 1988, pp.
243-263.

[29] Braess, D., and E. Grebe, A Numerical Analysis of Load-Flow Calculation Methods,
IEEE Transactions on Power Apparatus and Systems, Vol. PAS-100, No. 7, July 1981.

- 166 -



[30] Brennan, K. E, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations, Elsevier Science Publishing Co., Inc.,
New York, 1989.

[31] Calovic, M. A. and V. C. Strezoski, Calculation of Steady-State Load Flows
Incorporating System Control Effects and Consumer Self-Regulation
CHaracteristics, Electrical Power & Energy Systems, Vol 3, No 2, April 1981, pp.
65-74.

[32] Chao, Kwong-Shu, Dan-Kai Liu, and Ching-Tsai Pan, A Systematic Search Method
for Obtaining Multiple Solutions of Simultaneous Nonlinear Equations, IEEE
Transactions on Circuits and Systems, Vol CAS-22, No 9. September 1975, pp.
748-753

[33] Chua, Leon O., and Niantsu N. Wang, On the Application of Degree Theory to the
Analysis of Resistive Nonlinear Networks, Circuit Theory and Applications, Vol 5,
1977, pp. 35-68.

[34] Chua, L. O., and A. Ushida, A Switching-Parameter Algorithm for Finding Multiple
Solutions of Nonlinear Resistive Circuits, Circuit Theory and Applications, Vol 4,
1976, pp. 215-239.

[35] Concordia, C. and S. Ihara, Load Representation in Power Systems Stability Studies,
IEEE Transactions on Power Apparatus and Systems, Vol. PAS-101, No. 4, April
1982.

[36] Crandall, Stephen H., Engineering Analysis, A Survey of Numerical Procedures,
Robert E. Krieger Publishing Company, Malabar, Florida, 1986 Reprint Edition

[37] Crow, M. L., M. D. Ilic, and J. K. White, Convergence Properties of the Waveform
Relaxation Method as Applied to Electric Power Systems, ISCAS 89.

[38] Crow, M. L., Systems of Differential/Algebraic Equations with Applications to
Power System Transient Stability Analysis, Doctoral Thesis, The University of
Illinois at Urbana-Champaign, August 1989.

[39] Eisenberg, Michael, Descriptive Simulation: Combining Symbolic and Numerical
Methods in the Analysis of Chemical Reaction Mechanisms, A.I Memo No. 1171,
MIT, September 1989.

[40] Elmquist, Hilding, Manipulation of Continuous Models Based on Equations to
Assignment Statements, Simulation of Systems 1979, L. Dekker, G. Savastano, and
G. C. Vansteenkiste (eds), North-Holland Publishing Company, 1980.

[41] Fröberg, Carl-Eric, Numerical Mathematics, Theory and Computer Applications,
The Benjamin / Cummings Publishing Company, Inc. 1985.

[42] Gear, C. W., Efficient Step Size Control for Output and Discontinuities,
Transactions of the Society for Computer Simulation, Volume 1, Number 1, 1984, pp.
27-31.

[43] Gear, C. W., and L. R. Petzold, ODE Methods for the Solution of
Differential/Algebraic Systems, SIAM J. Numer.Anal., Vol 21, No 4, August 1984,
pp. 716-728.

[44] Gear, C. W., Simultaneous Numerical Solution of Differential-Algebraic Equations,
IEEE Transactions on Circuit Theory, Vol CT-18, No 1, January 1971.

[45] Golub, Gene H. and Charles F. Van Loan, Matrix Computations, The Johns Hopkins
University Press, Baltimore, MD, 1985.

- 167 -



[46] Hildebrand, F. B., Introduction to Numerical Analysis, Dover Publications, Inc., New
York, 1987 Edition.

[47] Hirobe, H. Doi, M. Goto, Y. Kokai, S. Yokokawa, and T. Suzuki, Development of a
Large-Scale Analytical Simulator for Studying Power Systems, Proceedings of the
Tenth Power Systems Computation Conference, Graz, Austria, 19-24 August 1990, pp.
750-757.

[48] Howe, R. M., X. A Ye and B. H. Li, An Improved Method for Simulation of
Dynamic Systems with Discontinuous Nonlinearities, Transactions of the Society for
Computer Simulation, Volume 1, Number 1, 1984, pp. 33-47.

[49] Huang, G., and W. Ongsakul, A New Relaxation Algorithm for Power Flow Analysis,
IEEE CH2869-8/90/0000-1276, 1990.

[50] Ilic-Spong, Marija, I. Norman Katz, Huizhu Dai, and John Zaborsky, Block Diagonal
Dominance for Systems of Nonlinear Equations with Application to Load Flow
Calculations in Power Systems, Mathematical Modelling, Vol 5, 1984, pp. 275-297.

[51] Ilic-Spong, M., M. L. Crow, and M. A. Pai, Transient Stability Simulation by
Waveform Relaxation Methods, IEEE Transactions on Power Systems, Vol.
PWRS-2, No. 4, November 1987.

[52] Jennings, Alan, Matrix Computation for Engineers and Scientists, John Wiley and
Sons, 1985.

[53] Karnopp, Dean, General Method for Including Rapidly Switched Devices in
Dynamics System Simulation Models, Transactions of the Society for Computer
Simulation, Volume 2, Number 1, 1985, pp. 155-168.

[54] Klos, A., and J. Bialek, Homeostasis as a Tool for Power System Simulation,
Proceedings of the Tenth Power Systems Computation Conference, Graz, Austria,
19-24 August 1990, pp. 701-708.

[55] Kundert, Kenneth S., Sparse Matrix Techniques, Circuit Analysis, Simulation and
Design, A. E. Ruehli, (editor), Elsevier Science Publishers B. V. (North-Holland),
1986.

[56] Mattson, Sven Erik, On modelling and differential/algebraic systems, Simulation,
January 1989, pp 24-32.

[57] Neyer, Andreas, Felix F. Wu, and Karl Imhof, Object-Oriented Programming for
Flexible Software: Example of a Load Flow, IEEE 88 SM 733-8, presented at the
IEEE/PES 1988 Summer Meeting, Portland, Oregon, July 24 - 29, 1988.

[58] Ortega, J. M. and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in
Several Variables, Academic Press, Inc.

[59] Palusinski, Olgierd, Simulation of Dynamics Systems Using Multirate Integration
Techniques, Transactions of the Society for Computer Simulation, Volume 2, Number
4, 1986, pp. 257-273.

[60] Palusinski, Olgierd A., and Tomas K. Simacek, Continuous Expansion in Integration
of Partitioned Dynamic Systems, Transactions of the Society for Computer
Simulation, Volume 2, Number 1, 1985, pp. 11-25.

[61] Petzold, Linda, Differential/Algebraic Equations are not ODE’s, SIAM J. SCI.
STAT. COMPUT., Vol 3, No 3, September 1982, pp. 367-385.

- 168 -



[62] Pottle, Christopher, Comprehensive Active Network Analysis by Digital Computer -
A State-Space Approach, Reprinted from Proc. Third Ann. Allerton Conf. Circuits
and Systems Thoery, 659-668, in Computer-Aided Circuit Design: Simulation and
Optimization, S. W. Direktor, editor, Dowden, Hutchinson & Ross, Inc., Stroudsburg,
PA, 1973, pp. 29-38.

[63] Pottle, Christopher, A "Textbook" Computerized State-Space Network Analysis
Algorithm, Reprinted from IEEE Trans Circuit Theory, CT-16 566-568 (1969) in
Computer-Aided Circuit Design: Simulation and Optimization, S. W. Direktor, editor,
Dowden, Hutchinson & Ross, Inc., Stroudsburg, PA, 1973, pp. 39-41.

[64] Rabinowitz, Philip, Numerical Methods for Nonlinear Algebraic Equations, Gordon
and Breach Science Publishers, London, 1970.

[65] Sangiovanni-Vincentelli, A. L., Circuit Simulation, Computer Design Aids for VLSI
Circuits, P. Antognetti, D. O. Pederson, and H. De Man, (eds), Martinus Nijhoff
Publishers, 1986.

[66] Sasson, Albert M., Carlos Trevino, and Florencio Aboytes, Improved Newton’s Load
Flow Through a Minimization Technique, Paper 71 TP 18-PWR presented at IEEE
Winter Power Meeting, New York, January 31 - February 5, 1971.

[67] Sincovec, Richard F., Albert M. Erisman, Elizabeth L. Yip, and Michael A. Epton,
Analysis of Descriptor Systems Using Numerical Algorithms, IEEE Transactions on
Automatic Control, Vol AC-26, No 1, February 1981.

[68] Singh, Sudarshan Pal and Ruey-Wen Liu, Existence of State Equation Representation
of Linear Large-Scale Dynamical Systems, IEEE Transactions on Circuit Theory,
Vol CT-20, No 3, May 1973.

[69] Somuah, Clement B., and Syed M. Islam, Multi-Time Step Solution of Stiff
Differential Systems: Application to Power System, International Journal of
Modelling and Simulation, Vol. 9, No. 2, 1989, pp. 53-58.

[70] Tellegen, B. D. H., A General Network Theorem, with Applications, Philip Research
Laboratory Report 259-269, 1952.

[71] Thomas, Robert J., Robert D. Barnard, and Jerome Meisel, The Generation of Quasi
Steady-State Load-Flow Trajectories and Multiple Singular Point Solutions, Paper
71 TP 111-PWR presented at IEEE Winter Power Meeting, New York, January 31 -
February 5, 1971.

[72] Trajkovic, Ljiljana, Robert C. Melville, and San-Chin Fang, Passivity and No-Gain
Properties Establish Global Convergence of a Homotopy Method for DC
Operating Points, IEEE CH2868-8/90/0000-0914, 1990.

[73] Vandenberghe, Lieven and Joos Vandewalle, A Globally Convergent Algorithm for
Solving a Broad Class of Nonlinear Resistive Circuits, IEEE
CH2868-8/90/0000-0403, 1990.

[74] Vandenberghe, L. and J. Vandewalle, Variable Dimension Algorithms for Solving
Nonlinear Resistive Circuits, European Conference on Circuit Theory and Design 5-8
September 1989. pp. 385-389.

[75] Vidyasagar, Mathukumalli, On the Well-Posedness of Large-Scale Interconnected
Systems, IEEE Transactions on Automatic Control, Vol AC-25, No 3, June 1980.

- 169 -



[76] Wamser, Robert J., and Ilya W. Slutsker, Power Flow Solution by the
Newton-Raphson Method in Transient Stability Studies, IEEE Transactions on
Power Apparatus and Systems, Vol PAS-103, No. 8, August 1984, pp. 2299-2306.

[77] Wasynczuk, O. and R. A. DeCarlo, The Component Connection Model and
Structure Preserving Model Order Reduction, International Federaton of Automatic
Control, Vol 17, No 4, 1981, pp. 619-626.

[78] White, Jacob K. and Alberto Sangiovanni-Vincentelli, Relaxation Techniques for the
Simulation of VLSI Circuits, Kluwer Academic Publishers, Boston, 1987.

Chapter Four: WAVESIM

[79] Kernighan, Brian W., and Dennis M. Ritchie, The C Programming Language,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1978.

[80] Moler, Cleve, John Little and Steve Bangert, PC-MATLAB for MS-DOS Personal
Computer, The MathWorks, Inc., Sherborn, MA 01770. Version 3.2-PC, June 8, 1987.

Appendices:

[81] Baker, D. W., and C. L. Patterson, Representation of Propeller Thrust and Torque
Characteristics for Simulations, Appendix C Data for 18 Propellers, Naval Ship
Research and Development Center, Washington, D.C., document MEL 202/67, March
1970.

[82] Basler Electric Company, Instruction Manual for Voltage Regulator Models SR4A
& SR8A, Puplication 9 0177 00 990, Revision B of July 1986.

[83] Bose, B. K., Power Electronics and AC Drives, Prentice-Hall, Englewood Cliffs, New
Jersey, 1986.

[84] Dalton, R. C., Turbine Generator Simulations for DD-692 Class 450 KW Machine
and SSN-637 Class 2000 KW Machine, Naval Ship System Engineering Station,
Philadelphia (NAVSSES Project C-267), March 1984.

[85] Doerry, Norbert H., "Shipboard Electrical Generator Simulation", Term paper for 6.238,
MIT, May 1988.

[86] Doerry, Norbert H., Computer Simulation of Shipboard Electrical Distribution
Systems, Naval Engineer and Master of Science in Electrical Engineering and
Computer Science thesis, MIT, May 1989.

[87] Fitzgerald, A. E., Charles Kingsley Jr., and Stephen D. Umans, Electric Machinery, 4th
Edition, McGraw-Hill, Inc., 1983.

[88] Hildebrand, F. B., Advanced Calculus for Applications, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey 1976.

[89] IEEE Power Engineering Society, "Dynamic Models for Steam and Hydro Turbines in
Power System Studies", IEEE Committee Report, Paper T 73 089-0, 1973.

[90] Kirtley, J. L., Synchronous Machine Dynamic Models, LEES Technical Report
TR-87-008, Massachusetts Institute of Technology, June 5, 1987.

[91] Krause, Paul C., Analysis of Electric Machinery, McGraw-Hill, Inc., 1986.

- 170 -



[92] Krause, Paul C., "Final Report on Modeling and Simulating of an Electric Drive System
for Advanced Warships", for David Taylor Research Center, under Contract No.
N61533-88-M-0746, P. C. Krause and Associates, Inc., West Lafayette, Indiana,
May 20, 1988 Revision.

[93] Krause, Paul C., "Final Report on Modeling and Simulation of an Electric Drive System
for Surface Combatant", for DTNSRDC Contract No. N6153387M2776, P. C. Krause
and Associates, Inc., West Lafayette, Indiana, September 1987.

[94] Krause, Paul C., "Final Report on Modeling and Simulating High Speed / High
Frequency SSTG Set for Post SSN 21 Submarines", for David Taylor Research Center,
Contract No. N61533-89-M-2105, P. C. Krause and Associates, Inc., West Lafayette,
Indiana, September 22, 1989.

[95] Krause, Paul C., "FInal Report on Modeling and Simulating Propulsion Derived Ship
Service for DDG51, Flight III", for David Taylor Research Center, Contract No.
N61533-88-M-2769, P. C. Krause and Associates, Inc., West Lafayette, Indiana,
January 1989.

[96] Krause, Paul C., "Modeling of Shipboard Electric Power Distribution System", SBIR
Phase I Final Report, P. C. Krause and Associates, Inc., West Lafayette, Indiana,
July 1988.

[97] Miniovich, I. Ya., Investigation of Hydrodynamic Characteristics of Screw
Propellers Under Conditions of Reversing and Calculation Methods for Backing
of Ships, Translated for U.S Navy Bureau of Ships in 1960 by Royer & Roger, Inc.,
Washington DC. from Transactions of the A. N. Krylov Central Scientific Research
Institute, Issue No. 122, 1958.

[98] Press, William H., Brian P. Flannery, Saul A. Teukolsky, William T. Vettering,
Numerical Recipes in C: The Art of Scientific Computing, Cambridge University
Press, New York, 1988.

[99] Rowen, W.I., "Simplified Mathematical Representations of Heavy-Duty Gas Turbines",
Journal of Engineering for Power, October 1983, Vol 105, pages 865-869.

[100] Sarma, Mulukutla, Synchronous Machines (Their Theory, Stability, and Excitation
Systems), Gordon and Breach Science Publishers, New York, 1979.

[101] Sauer, P. W., and M. A. Pai, Course Guide and Notes for Power System Dynamics
and Stability, Department of Electrical Engineering and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana Ill.

[102] Velez-Reyes, Miguel and George C. Verghese, Developing Reduced Order
Electrical Mahcine Models Using Participation Factors, 12th IMACS World
Congress, Paris, July 1988.

[103] Woodson, Herbert H. and James R. Melcher, Electromechanical Dynamics, John
Wiley and Sons, 1968.

[104] Woodward Governor Company, Electrical Generating Systems: Synchronizing and
Methods of Controlling Output, Manual 25104B, 1985.

[105] Woodward Governor Company, The Control of Prime Mover Speed, Part I, The
Controlled System, Manual 25031, 1981.

[106] Woodward Governor Company, The Control of Prime Mover Speed, Part II, Speed
Governor Fundamentals, Manual 25031, 1981.

- 171 -



[107] Woodward Governor Company, The Control of Prime Mover Speed, Part III,
Parallel Operation of Alternators, Manual 25031, 1981.

[108] Woodward Governor Company, The Control of Prime Mover Speed, Part IV-A,
Mathematical Analysis, 1981.

[109] Woodward Governor Company, 9900-326 System, 9900-323 Electronic Governor
Control, 9900-322 Interface Panel includes 9900-305 Temperature Sensor, Part 2,
Theory of Operation and Calibration Procedures for Allison 501K-17
Gas-Turbine Engines, Manual 83029 Part 2B.

[110] Woodward Governor Company, 2301 Load Sharing & Speed Control, Manual
82406H., 1978.

[111] Woodward Governor Company, 2301A Electronic Load Sharing and Speed
Controls 9905 Series, UL Listed E 97763, Installation Operation and Calibration,
Manual 82389G, 1987.

[112] Woodward Governor Company, EG-M Control Box, Manual 37705G, 1964.

[113] Woodward Governor Company, EG-A Control Box, Manual 37706N, 1970.

[114] Woodward Governor Company, Master Frequency Trimmer For 2301A Multiple
Engine System, Manual 82397, 1987.

[115] Woodward Governor Company, SPM Digital Synchronizer, Bulletin 82714A, 1976.

[116] Woodward Governor Company, Digital Speed Matching Synchronizer (DSM),
Manual 85100E, 1986.

[117] Woodward Governor Company, SPM Digital Synchronizer, Manual 82708A, 1972.

[118] Woodward Governor Company, Precise Frequency Control, Manual 82497B, 1984

- 172 -



Appendix A: Glossary

Block A subset of a system’s equations and variables which must be solved
simultaneously. Blocks are organized into a sequence where
variables determined in a previous block may be used in following
blocks.

Continuation A technique to enlarge the convergence region of a nonlinear system
Parameter by using the solution to a linear system as the initial guess for the

solution of another system which is a combination of the linear and
nonlinear systems. The process is repeated with each iteration
increasing the nonlinear portion until the solution to the nonlinear
system is determined. The continuation parameter determines the
relative proportion of the nonlinear system: 0 for the linear system
and 1 for the desired nonlinear system.

Device A device is a mathematical model of a physical piece of equipment
comprising a system. Devices interact with one another through
interface variables which are associated with other device interface
variables through terminals connected at nodes. The equations
describing a given device type are specified in the device definition.
A given instance of a device also has associated parameters and
nodal connections.

device.def A file for describing a device definition. Each device type has an
entry describing the device type name, terminals, states, parameters,
structural Jacobian, and MATLAB M-File containing the
constitutive equations.

Device Jacobian A matrix whose elements are the partial derivatives of the export
variables of a device with respect to the device import variables.

Device Structural A matrix describing the dependence of a device’s export variable
Jacobian Matrix with respect to the import variables. The dependence is specified by

a matrix whose elements are a code indicating if the dependence is
zero, identity, diagonal, linear, or nonlinear.

Export Variable An interface variable (either a potential or flow variable) of a device
which is explicitly defined by the device constitutive equations. A
device takes import variables as input and produces export variables.
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Flow Variable An interface variable (either an export or import variable) associated
with a normal terminal of a device which corresponds to a quantity
satisfying Kirchhoff’s Current Law at nodes. Examples of flow
variables are currents, forces, and torques.

Gmin A modification to the KCL equations at a node corresponding to the
insertion of a conductance to the 0 potential. Used to prevent
singular systems.

Import Variable An interface variable (either a potential or flow variable) of a device
which is implicitly defined by the device constitutive equations. A
device takes import variables as input and produces export variables.

Information A terminal of a device having only a potential associated with it.
Terminal Used to convey energyless information between devices.

Interface Variable Variables through which devices communicate energy and
information transfer to other devices. Interface variables are
associated with terminals, can be classified as either flow or
potential variables and can be classified as either import or export
variables.

KCL Kirchhoff’s Current Law which states the sum of the flow variables
attached to a node is zero.

KCL Equation Equates the sum of the flow variables attached to a node to zero.

KCL Group If a subset of a device’s flow variables add to zero by definition,
Number then the elements of such a subset have a device-unique nonzero

group number. Flow variables which do not belong to such a subset
have a 0 KCL Group Number.
KCL Group Numbers are used to determine possible singular
systems due to linear dependence of system KCL equations.

MATLAB M-File Text files of MATLAB commands for creating new MATLAB
functions or executing scripts.

Newton-Raphson An iterative technique for solving systems of nonlinear equations
Method which uses the Jacobian Matrix to generate corrections to the system

variables.
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Node A connection point for connecting terminals of one or more devices.
If at least one normal terminal is attached, the node is a normal node
and a system KCL equation is written to equate the sum of all the
attached flow variables to zero. If only information terminals are
attached to a node, the node is an information node. All nodes have
an associated node potential.

Normal Terminal A terminal having both a potential and flow variable. Used to
simulate energy transfer between devices.

Parameter A variable which does not change throughout the simulation.
Usually refers to machine ratings, resistances, time constants, etc.

Potential Each export potential variable in a system has an associated
Difference potential difference equation equating to zero the difference between
Equation the potential of the node to which the variable is attached and the

value of the export potential.

Potential Variable An interface variable (either an import or export variable) associated
with either a normal or information node. All of the potential
variables attached to the same node are equal to the potential of the
node.

Rmin A modification to a potential difference equation corresponding to
the insertion of a series resistance. Used to prevent singular
systems.

Smoothing A waveform operator for removing the high order waveform content
Operator of its argument by returning a waveform which is the convolution of

the argument with a square pulse. The returned waveform is
effectively the local average of the argument waveform. The
smoothing operator removes unnecessary detail from a waveform
and improves the representation of the desired properties of the
waveform with fewer coefficients.

State A state is a device variable whose value is retained between
waveform intervals. Constants of integration and device operating
modes are the most common uses of states.
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Structural Jacobian A code indicating the nature of an element of a Jacobian matrix:
Code 0 Zero Matrix

I Identity Matrix
D Diagonal Matrix
L Linear Matrix
A Type A nonlinear Matrix
N Nonlinear Matrix
U Unknown

Subsystem A subset of the devices of a system which are grouped together and
solved independently of other devices and subsystems. Subsystems
have not been implemented in WAVESIM.

System A group of devices and subsystems and the nodes interconnected
them.

System Jacobian A matrix containing the partial derivatives of the system equations
with respect to the system variables.

System Structural A matrix describing the dependence of a system’s equations with
Jacobian Matrix respect to the system variables. The dependence is specified by a

matrix whose elements are a code indicating if the dependence is
zero, identity, diagonal, linear, or nonlinear.

System Variable The set of system variables is composed of all the node potentials
and all the device import flow variables.

Terminal A modelling analogy to a physical attachment point on a device.
Normal terminals have an associated flow and potential variable and
are used to model the transfer of energy into and out of a device.
Information terminals have only a potential variable and are used to
convey information between devices.

Waveform A representation of a variable over a given time interval consisting
of a vector of coefficients and a waveform type indicator for
specifying how the coefficients should be interpreted. Common
waveform types are Legendre Series, Chebyshev Series,
Polynomials and Data Points.

Waveform Content The magnitude of a coefficient of a waveform divided by the square
root of the sum of all the waveform coefficients. The Waveform
Contents of the higher order coefficients are used to determine if the
truncation error is negligible.
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Waveform Type An indicator specifying how the coefficients of the waveform vector
Indicator should be interpreted. Common waveform types are Legendre

Series, Chebyshev Series, Polynomials and Data Points.

WAVESIM A numerical algorithm development program incorporating the
systematic treatment of waveforms as a data type, the terminal
description of devices, and the use of structural Jacobians in system
reduction.
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Appendix B: Continuation Parameter Pitfalls

If used properly, continuation parameters can help enlargen the region of convergence

of an iterative scheme. This section will show how continuation parameters can fail due to

bifurcations of solutions.

Take for example, the following system of two equations and two unknowns

F(x,y) = 0:

Initially, set M = 0 and B = 1.875. From the following figure, it is obvious the solution

is the intersection of the two curves and falls at the point (1.5,1.875).

Figure B-1: Solution to y = x3 - x and y = 1.875

To solve this system with a continuation parameter, we create a new function H(x,y,α)

which is formed by combining F(x,y) with a linear system G(x,y):

F1(x , y) = y − (x 3 − x) = 0

F2(x , y) = y − (Mx +B) = 0

-5.0

-2.5

0

2.5

5.0

-1 0 1 x

Nonlinear Solution

y = x3 - x

y = 1.875

G1(x , y) = y − (mx + b ) = 0

G2(x , y) = y − (Mx +B) = 0
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The modeller now has the choice of selecting m and b. A natural choice would be a

linearization about a given point. If we linearize about x = 0, the values are m = -1 and b = 0.

The following figure shows the results of this selection:

Figure B-2: Continuation Method for m=-1  b=0  M=0  B=1.875

H(x , y , α) = αF(x , y) + (1 − α)G(x , y) = 0

-10

-5

0

5

10

-1 1

y = a(x3-x)+(1-a)(-x)

a=0 y = 1.875

a=.1

a=.5

a = 1

-6

-4

-2

0

2

4

6

-10 -8 -6 -4 -2 0 2 4 6 8 10

ROOT LOCUS for y = 1.875   y = a(x^3-x) + (a-1)(-x)
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α x Root Locus Points

0 -1.8750

0.0100 10.8310 -8.8820 -1.9490

0.0200 7.8686 -5.8222 -2.0464

0.0400 5.7569 -3.2569 -2.5000

0.0421 5.6274 -2.8637 -2.7637

0.0422 5.6214 -2.8107 - 0.0613i -2.8107 + 0.0613i

0.0600 4.8125 -2.4063 - 0.8387i -2.4063 + 0.8387i

0.1000 3.8553 -1.9277 - 1.0712i -1.9277 + 1.0712i

0.2000 2.8743 -1.4372 - 1.0937i -1.4372 + 1.0937i

0.4000 2.1609 -1.0804 - 1.0010i -1.0804 + 1.0010i

0.5000 1.9746 -0.9873 - 0.9614i -0.9873 + 0.9614i

0.7000 1.7263 -0.8632 - 0.8981i -0.8632 + 0.8981i

1.0000 1.5000 -0.7500 - 0.8292i -0.7500 + 0.8292i

Note the solution for is (-1.875,1.875) which is not very close to the desired

solution for . Furthermore, as increases slightly, it actually becomes slightly more

negative until the nonlinear curve no longer intersects the linear equation in the left hand

plane. At this point, the solution has a discontinuity and jumps into the right hand plane with

a value for x much larger than the solution. The root locus for x as α goes from 0 to 1 clearly

shows this. Hence for this selection of m and b, the use of the continuation parameter makes

the job of solving the system tougher instead of easier.

If we choose different values for m and b, the situtation may change. Say for example,

we set m = 1 and b = 0. This selection appears to work well as can be seen with the

following figure:

y = α(x 3 − x) + (1 − α) (−x)

y = 1.875

α = 0

α = 1 α
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Figure B-3: Continuation Method for m=1  b=0  M=0  B=1.875
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y = a(x3-x)+(1-a)x

a=1
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a=0

y = 1.875
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5
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ROOT LOCUS for y = 1.875   y = a(x^3-x) + (a-1)(x)
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α x Root Locus Points

0 1.8750

0.0400 1.7891 -0.8945 - 5.0399i -0.8945 + 5.0399i

0.2000 1.6440 -0.8220 - 2.2421i -0.8220 + 2.2421i

0.5000 1.5536 -0.7768 - 1.3455i -0.7768 + 1.3455i

1.0000 1.5000 -0.7500 - 0.8292i -0.7500 + 0.8292i

The solution for is close to the solution and as α increases, it rapidly converges

on the desired solution (1.5,1.875). We should not rejoice however, because even this

selection can fail for other choices for M and B. For example, if M = 2.5 and B = -3, the

following figure demonstrates a discontinuity in the solution path:

Figure B-4: Continuation Method for m=1  b=0  M=2.5  B=-3

y = α(x 3 − x) + (1 − α)x

y = 1.875

α = 0

-10

-5

0

5

10

-1 1

y = a(x3-x)+(1-a)x

a=0

a=.05

a=.5 a=1

y = 2.5x - 3
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α x Root Locus Points

0 2.0000

0.0100 -13.2173 11.1887 2.0286

0.0200 -9.6223 7.5604 2.0619

0.0400 -7.0779 4.9274 2.1505

0.0735 -5.4659 2.7706 2.6953

0.0736 -5.4628 2.7314 - 0.0326i 2.7314 + 0.0326i

0.0800 -5.2778 2.6389 - 0.3761i 2.6389 + 0.3761i

0.1000 -4.8192 2.4096 - 0.6471i 2.4096 + 0.6471i

0.3000 -3.1844 1.5922 - 0.7780i 1.5922 + 0.7780i

0.5000 -2.6891 1.3445 - 0.6507i 1.3445 + 0.6507i

1.0000 -2.2047 1.1024 - 0.3815i 1.1024 + 0.3815i

-6

-4

-2

0

2

4

6

-10 -8 -6 -4 -2 0 2 4 6 8 10

ROOT LOCUS for y = 2.5x-3   y = a(x^3-x) + (a-1)(x)

y = α(x 3 − x) + (1 − α)x

y = 2.5y − 3
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The bottom line is that it may not be possible to develop a transformation function

whose solution vector is always continuous. Any information known as to the region where

the probable operating point lies should be used in directing the solution to that region. For

this example, if x is known to be constrained to the interval [-5 5] and M is known to be less

than 17.75 (.75•52 - 1 is the slope of the line tangent to y = x3 - x and passing through (5,120)

) then y is also constrained to the interval [-120 120]. If we use as our linearizing function

the line connecting (-5,-120) and (5,120) it is clear the root locus will also remain within the

constraints for any value of M or B meeting the constraints at :

Figure B-5: Continuatin method for m=24 b=0 M=2.5 B=-3

α = 1

y = α(x 3 − x) + (1 − α)24x

-10

-5

0

5

10

-1 1

y = a(x3-x)+(1-a)24x

a=1

y = 2.5x - 3

a=.95

a=.75 a=.5 a=0
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α x Root Locus Points

0 0.0789 -13.7847i 0.0789 +13.7847i -0.1395

0.1000 0.0789 -13.7847i 0.0789 +13.7847i -0.1579

0.2000 0.0909 - 9.0843i 0.0909 + 9.0843i -0.1817

0.3000 0.1070 - 6.8338i 0.1070 + 6.8338i -0.2141

0.4000 0.1301 - 5.3666i 0.1301 + 5.3666i -0.2603

0.5000 0.1657 - 4.2523i 0.1657 + 4.2523i -0.3313

0.6000 0.2265 - 3.3147i 0.2265 + 3.3147i -0.4530

0.7500 0.4476 - 2.0659i 0.4476 + 2.0659i -0.8952

0.8500 0.7291 - 1.3744i 0.7291 + 1.3744i -1.4582

0.9500 0.9945 - 0.7737i 0.9945 + 0.7737i -1.9890

1.0000 1.1024 - 0.3815i 1.1024 + 0.3815i -2.2047
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6

-10 -8 -6 -4 -2 0 2 4 6 8 10

ROOT LOCUS for y = 2.5x-3   y = a(x^3-x) + (a-1)(24x)

y = α(x 3 − x) + (1 − α)24x

y = 2.5y − 3
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For this example it is actually quit easy to determine if a bifurcation will occur. At a

bifurcation, the x root locus points satisfy the following relationship:

where c is the multiple root whose paths will deviate from the real x-axis and d is the

root staying on the x-axis. Now the actual equation defining the roots is given by:

Equating terms we get:

solving this system for c, d, and α, we get:

If one of the solutions for α is a real number in the interval [0,1], then there will be a

bifurcation and possibly a discontinuity in the path. If two of the roots approach from +∞
and -∞ along the real axis and a solution for α exists in the interval [0,1], then there will

definitely be a discontinuity in the solution path. If two roots appraoch from off the real axis,

combine at the bifurcation point, then travel in the +x and -x directions, there will be three

real solutions for x and the solution path will converge onto one of them. If there is no real

solution for α in the interval [0,1], then there will be no bifurcation, no discontinuity in the

solution path and the solution will be unique.

(x − c)2 (x − d ) = 0

x 3 + (−d − 2c)x 2 + (c 2 + 2cd)x + (−c 2d )

αx 3 + ((1 − α)m − α −M)x + (1 − α)b −B = 0

−d − 2c = 0

c 2 + 2cd =
1
α
((1 − α)m − α −M)

−c 2d =
1
α
((1 − α)b −B)

d = −2c

c =



(1 − α)b −B

2α




1

3

(1 − α)m − α −M + 3α



(1 − α)b −B

2α




2

3

= 0
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Appendix C: Load Flow Example

The method for building systems can be applied to static simulations for determining

equilibrium points of systems. The traditional load flow is representative of this type of

problem. Figure C-1 shows a three bus load flow example consisting of four device types:

PV Generator, VD Generator (Slack Bus), PQ Load, and a transmission line.

Figure C-1:  3 Bus Load Flow Example
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C-1: Device Definitions

C-1.1: PV Generator

Interface Variables

Terminal Potential Variable Flow Variable (KCL Group) Type

VQ V (export) Q (import) (0) Normal
DP D (import) P (export) (0) Normal

The import Ximp and export Xexp vectors are defined by:

Parameters

PG Scheduled Generator Power
VG Scheduled Generator Voltage

Equations

V = VG

P = -PG

Device Structural Jacobian

The device structural jacobian is given by:

Device Jacobian

The device jacobian is given by:

Ximp =



Q
D




Xexp =



V
P




JDS =



0 0
0 0





JD =



0 0
0 0




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C-1.2: VD Generator (Slack Bus)

Interface Variables

Terminal Potential Variable Flow Variable (KCL Group) Type

VQ V (export) Q (import) (0) Normal
DP D (export) P (import) (0) Normal

The import Ximp and export Xexp vectors are defined by:

Parameters

VG Scheduled Generator Voltage
DG Scheduled Generator Angle

Equations

V = VG

D = DG

Device Structural Jacobian

The device structural jacobian is given by:

Device Jacobian

The device jacobian is given by:

Ximp =



Q
P




Xexp =




V
D




JDS =



0 0
0 0





JD =



0 0
0 0




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C-1.3: PQ Load

Interface Variables

Terminal Potential Variable Flow Variable (KCL Group) Type

VQ V (import) Q (export) (0) Normal
DP D (import) P (export) (0) Normal

The import Ximp and export Xexp vectors are defined by:

Parameters

PL Scheduled Load Real Power
QL Scheduled Load Reactive Power

Equations

P = PL

Q = QL

Device Structural Jacobian

The device structural jacobian is given by:

Device Jacobian

The device jacobian is given by:

Ximp =




V
D




Xexp =



Q
P




JDS =



0 0
0 0





JD =



0 0
0 0




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C-1.4: Transmission Line

Interface Variables

Terminal Potential Variable Flow Variable (KCL Group) Type

VQ1 V1 (import) Q1 (export) (0) Normal
DP1 D1 (import) P1 (export) (0) Normal

VQ2 V2 (import) Q2 (export) (0) Normal
DP2 D2 (import) P2 (export) (0) Normal

The import Ximp and export Xexp vectors are defined by:

Parameters

R Transmission Line resistance
X Transmission Line reactance

Equations

Obtain Y:

Ximp =








V1

D1

V2

D2








Xexp =








Q1

P1

Q2

P2








A =
R

R2 +X2

B = −
X

R2 +X2

Y = √A2 +B2

DY = atan2(B ,A)
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Calculate Side one current

Calculate Side two current

Calculate real and imaginary parts of the voltages

Calculate the export variables (Powers)

Device Structural Jacobian

I1R = V1Y cos(D1 +DY) −V2Y cos(D2 +DY)

I1I = V1Y sin(D1 +DY) −V2Y sin(D2 +DY)

I2R = −I1R

I2I = −I1I

V1R = V1 cos(D1)

V1I = V1 sin(D1)

V2R = V2 cos(D2)

V2I = V2 sin(D2)

P1 = V1RI1R +V1II1I

Q1 = −V1RI1I +V1II1R

P2 = V2RI2R +V2II2I

Q2 = −V2RI2I +V2II2R

JDS =






N N N N
N N N N
N N N N
N N N N





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Device Jacobian

Calculate the Partial derivatives of the voltages with respect to the import variables:

Calculate the partials of the currents with respect to the import variables:

∂V1R

∂Ximp

= [cos(D1) −V1 sin(D1) 0 0]

∂V1I

∂Ximp

= [sin(D1) V1 cos(D1) 0 0]

∂V2R

∂Ximp

= [0 0 cos(D2) −V2 sin(D2)]

∂V2I

∂Ximp

= [0 0 sin(D2) V2 cos(D2)]

∂I1R

∂Ximp

= [Y cos(D1 +DY) −YV1 sin(D1 +DY) −Y cos(D2 +DY) YV2 sin(D2 +DY)]

∂I1I

∂Ximp

= [Y sin(D1 +DY) YV1 cos(D1 +DY) −Y sin(D2 +DY) −YV2 cos(D2 +DY)]

∂I2R

∂Ximp

= −
∂I1R

∂Ximp

∂I2I

∂Ximp

= −
∂I1I

∂Ximp
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Calculate the jacobian matrix

JD =








−I1I I1R V1I −V1R 0 0 0 0

I1R I1I V1R V1I 0 0 0 0

0 0 0 0 − I2I I2R V2I −V2R

0 0 0 0 I2R I2I V2R V2I
































∂V1R

∂Ximp

∂V1I

∂Ximp

∂I1R

∂Ximp

∂I1I

∂Ximp

∂V2R

∂Ximp

∂V2I

∂Ximp

∂I2R

∂Ximp

∂I2I

∂Ximp
























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C-2: Network Description

Figure C-2-1 details the device interconnections of the 3 Bus system shown in Figure

C-1.

Figure C-2-1:  3 Bus Loadflow Block Diagram
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C-2.1: Variable Labeling Convention

For this example, the following convention will be used for labeling variables and

functions:

Device Terminal Variables: xaa_bb_cdf

aa Device Name
bb Variable Name

c n = normal terminal
i = information terminal

d i = import variable
e = export variable

f p = potential variable
f = flow variable

Device import variable vector xaa_i

aa Device name

Device export variable defining function xaa_bb_cdf = faa_bb_cdf(xaa_i)

aa Device Name
bb Variable Name

c n = normal terminal
i = information terminal

d e = export variable

f p = potential variable
f = flow variable

Device Jacobian Jaa

Device Jacobian Element Jaa_bb_gg

aa Device Name
bb Export Variable Name
gg Import Variable Name

System Variables: Node Potentials Vn

n Node Serial Number

System Variables: Flow Variables Iaa_bb

aa Device Name
bb Variable Name
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System Equation: KCL gn()

n Serial number of node KCL is applied to

System Equation: Potentials gn_aa_bb()

n Serial number of node
aa Device Name
bb Export Potential Variable Name

System Jacobian Element: KCL vs Node Potential Jsys_n_m

System Jacobian Element: KCL vs Import Flow Jsys_n_aa_bb

System Jacobian Element: Potential Eqn vs Node Potential Jsys_cc_dd_m

System Jacobian Element: Potential Eqn vs Import flow Jsys_cc_dd_aa_bb

n Serial number of KCL node
m Serial number of Node Potential
aa Flow Variable Device Name
bb Flow Variable Device Variable Name
cc Potential Equation Potential Device Name
dd Potential Equation Potential Variable Name
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C-2.2: Network Specification

Now that the variable labeling convention has been addressed, it is time to define the

devices and the network interconnecting them.

PD Generator G1

Terminal Potential Variable Flow Variable Node

VQ xG1_V_nep xG1_Q_nif 1
DP xG1_D_nep xG1_P_nif 4

Parameters

VG 1.0 PU
DG 0.0 RAD

Import Vector:

PV Generator G2

Terminal Potential Variable Flow Variable Node

VQ xG2_V_nep xG2_Q_nif 2
DP xG2_D_nip xG2_P_nef 5

Parameters

PG 0.5 PU
VG 1.05 PU

Import Vector:

xG1_i =




xG1_Q_nif

xG1_P_nif




= 


IG1_Q

IG1_P





xG2_i =




xG2_Q_nif

xG2_D_nip




= 


IG2_Q

V5




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PQ Load L3

Terminal Potential Variable Flow Variable Node

VQ xL3_V_nip xL3_Q_nef 3
DP xL3_D_nip xL3_P_nef 6

Parameters

PL 0.6 PU
QL 0.3 PU

Import Vector:

Transmission Line T12

Terminal Potential Variable Flow Variable Node

VQ1 xT12_V1_nip xT12_Q1_nef 1
DP1 xT12_D1_nip xT12_P1_nef 4

VQ2 xT12_V2_nip xT12_Q2_nef 2
DP2 xT12_D2_nip xT12_P2_nef 5

Parameters

R 0.15 PU
X 0.60 PU

Import Vector:

xL3_i =




xL3_V_nip

xL3_D_nip




= 


V3

V6





xT12_i =








xT12_V1_nip

xT12_D1_nip

xT12_V2_nip

xT12_D2_nip








=








V1

V4

V2

V5







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Transmission Line T13

Terminal Potential Variable Flow Variable Node

VQ1 xT13_V1_nip xT13_Q1_nef 1
DP1 xT13_D1_nip xT13_P1_nef 4

VQ2 xT13_V2_nip xT13_Q2_nef 3
DP2 xT13_D2_nip xT13_P2_nef 6

Parameters

R 0.05 PU
X 0.20 PU

Import Vector:

Transmission Line T23

Terminal Potential Variable Flow Variable Node

VQ1 xT23_V1_nip xT23_Q1_nef 2
DP1 xT23_D1_nip xT23_P1_nef 5

VQ2 xT23_V2_nip xT23_Q2_nef 3
DP2 xT23_D2_nip xT23_P2_nef 6

Parameters

R 0.10 PU
X 0.40 PU

Import Vector:

xT13_i =








xT13_V1_nip

xT13_D1_nip

xT13_V2_nip

xT13_D2_nip








=








V1

V4

V3

V6








xT23_i =








xT23_V1_nip

xT23_D1_nip

xT23_V2_nip

xT23_D2_nip








=








V2

V5

V3

V6







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C-2.3: System Variables and Equations

There are nine system variable and equations associated with this example. There

are the six node potentials plus three import flow variables ordered in the following

manner:

The nine system equations are composed of six Kirchhoff Current Law equations and

three potential equations:

xsys = [V1 V2 V3 V4 V5 V6 IG1_Q IG1_P IG2_Q]
T

g1(xsys) = IG1_Q + xT12_Q1_nef + xT13_Q1_nef

g2(xsys) = IG2_Q + xT12_Q2_nef + xT23_Q1_nef

g3(xsys) = xL3_Q_nef + xT13_Q2_nef + xT23_Q2_nef

g4(xsys) = IG1_P + xT12_P1_nef + xT13_P1_nef

g5(xsys) = xG2_P_nef + xT12_P2_nef + xT23_P1_nef

g6(xsys) = xL3_P_nef + xT13_P2_nef + xT23_P2_nef

g1_G1_V(xsys) = V1 − xG1_V_nep

g2_G2_V(xsys) = V2 − xG2_V_nep

g4_G1_D(xsys) = V4 − xG1_D_nep
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C-2.4: System Structural Jacobian Matrix

The equations for generating the system jacobian matrix are given by:

g1(xsys)

g2(xsys)

Jsys_1_1 = JT12_Q1_V1 + JT13_Q1_V1 =N +N

Jsys_1_2 = JT12_Q1_V2 =N

Jsys_1_3 = JT13_Q1_V2 =N

Jsys_1_4 = JT12_Q1_D1 + JT13_Q1_D1 =N +N

Jsys_1_5 = JT12_Q1_D2 =N

Jsys_1_6 = JT13_Q1_D2 =N

Jsys_1_G1_Q = I

Jsys_2_1 = JT12_Q2_V1 =N

Jsys_2_2 = JT12_Q2_V2 + JT23_Q1_V1 =N +N

Jsys_2_3 = JT23_Q1_V2 =N

Jsys_2_4 = JT12_Q2_D1 =N

Jsys_2_5 = JT12_Q2_D2 + JT23_Q1_D1 =N +N

Jsys_2_6 = JT23_Q1_D2 =N

Jsys_2_G2_Q = I
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g3(xsys)

g4(xsys)

Jsys_3_1 = JT13_Q2_V1 =N

Jsys_3_2 = JT23_Q2_V1 =N

Jsys_3_3 = JL3_Q_V + JT13_Q2_V2 + JT23_Q2_V2 = 0 +N +N

Jsys_3_4 = JT13_Q2_D1 =N

Jsys_3_5 = JT23_Q2_D1 =N

Jsys_3_6 = JL3_Q_D + JT13_Q2_D2 + JT23_Q2_D2 = 0 +N +N

Jsys_4_1 = JT12_P1_V1 + JT13_P1_V1 =N +N

Jsys_4_2 = JT12_P1_V2 =N

Jsys_4_3 = JT13_P1_V2 =N

Jsys_4_4 = JT12_P1_D1 + JT13_P1_D1 =N +N

Jsys_4_5 = JT12_P1_D2 =N

Jsys_4_6 = JT13_P1_D2 =N

Jsys_4_G1_P = I
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g5(xsys)

g6(xsys)

Jsys_5_1 = JT12_P2_V1 =N

Jsys_5_2 = JT12_P2_V2 + JT23_P1_V1 =N +N

Jsys_5_3 = JT23_P1_V2 =N

Jsys_5_4 = JT12_P2_D1 =N

Jsys_5_5 = JG2_P_D + JT12_P2_D2 + JT23_P1_D1 = 0 +N +N

Jsys_5_6 = JT23_P1_D2 =N

Jsys_G2_Q = JG2_P_Q = 0

Jsys_6_1 = JT13_P2_V1 =N

Jsys_6_2 = JT23_P2_V1 =N

Jsys_6_3 = JL3_P_V + JT13_P2_V2 + JT23_P2_V2 = 0 +N +N

Jsys_6_4 = JT13_P2_D1 =N

Jsys_6_5 = JT23_P2_D1 =N

Jsys_6_6 = JL3_P_D + JT13_P2_D2 + JT23_P2_D2 = 0 +N +N
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g1_G1_V(xsys)

g2_G2_V(xsys)

g4_G1_D(xsys)

Jsys_G1_V_1 = I

Jsys_G1_V_G1_Q = −JG1_V_Q = 0

Jsys_G1_V_G1_P = −JG1_V_P = 0

Jsys_G2_V_2 = I

Jsys_G2_V_5 = −JG2_V_D = 0

Jsys_G2_V_G2_Q = −JG2_V_Q = 0

Jsys_G1_D_4 = I

Jsys_G1_D_G1_Q = −JG1_D_Q = 0

Jsys_G1_D_G1_P = −JG1_D_P = 0
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By applying the rules of Structural Jacobian element arithmetic on the system

equations, we can generate the following system Structural Jacobian:

Close inspection of this matrix reveals seven blocks: Six 1×1 element blocks and one

3×3 element block:

Block 1

System Row: 7

System Column: 1

System Variable: V1

Equations:

Structural Jacobian:

Jss =














N N N N N N I 0 0
N N N N N N 0 0 I
N N N N N N 0 0 0
N N N N N N 0 I 0
N N N N N N 0 0 0
N N N N N N 0 0 0
I 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0














g1_G1_V(xsys) = V1 − xG1_V_nep

JB1 = [I ]
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Block 2

System Row: 8

System Columns: 2

System Variable: V2

Equations:

Structural Jacobian:

Block 3

System Row: 9

System Column: 4

System Variable: V4

Equations:

Structural Jacobian:

g2_G2_V(xsys) = V2 − xG2_V_nep

JB2 = [I ]

g4_G1_D(xsys) = V4 − xG1_D_nep

JB3 = [I ]
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Block 4

System Rows: 3 5 6

System Columns: 3 5 6

System Variables: V3 V5 V6

Equations:

Structural Jacobian:

Block 5

System Row: 1

System Column: 7

System Variable: IG1_Q

Equations:

Structural Jacobian:

g3(xsys) = xL3_Q_nef + xT13_Q2_nef + xT23_Q2_nef

g5(xsys) = xG2_P_nef + xT12_P2_nef + xT23_P1_nef

g6(xsys) = xL3_P_nef + xT13_P2_nef + xT23_P2_nef

JB4 =





N N N
N N N
N N N






g1(xsys) = IG1_Q + xT12_Q1_nef + xT13_Q1_nef

JB5 = [I ]
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Block 6

System Row: 2

System Column: 8

System Variable: IG1_P

Equations:

Structural Jacobian:

Block 7

System Row: 4

System Column: 9

System Variable: IG2_Q

Equations:

Structural Jacobian:

g2(xsys) = IG2_Q + xT12_Q2_nef + xT23_Q1_nef

JB6 = [I ]

g4(xsys) = IG1_P + xT12_P1_nef + xT13_P1_nef

JB7 = [I ]
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C-2.5: Solving the System

Applying the equations for the first three blocks yields:

Now the following system of three equations for the fourth block must be solved:

Where:

Starting with the intial guess of [1 0 0]T for xB4 we obtain the following error vector

and jacobian matrix:

V1 = fG1_V_nep







0
0






= 1.0 PU

V2 = fG2_V_nep







0
0






= 1.05 PU

V4 = fG1_D_nep







0
0






= 0.0 PU

xerror =




g3(xB4,xpre)
g5(xB4,xpre)
g6(xB4,xpre)





= 0

xB4 =




V3

V5

V6





xpre =




V1

V2

V4





xerror
0 =






0.1824
− 0.4485
0.5706






JB4
0 =






6.9412 0.6176 − 1.7941
− 0.6176 4.1176 − 2.4706
1.7253 − 2.4706 7.1765





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Inverting the Jacobian and multiplying by the error vector results in the following

correction vector for xB4 :

By repeating the Newton-Raphson iterations several more times, the following table

can be constructed:

Iteration V3 V5 V6 g3() g5() g6()

0 1.0000 0.0000 0.0000 0.1824 -0.4485 0.5706

1 0.9559 0.0769 -0.0424 0.0289 -0.0084 0.0311

2 0.9502 0.0762 -0.0463 2.284e-4 -0.448e-4 2.208e-4

3 0.9502 0.0761 -0.0464 1.370e-8 -0.214e-8 1.240e-8

From these results, the final three blocks can easily be solved:

IG1_Q = -0.1451 PU

IG1_P = -0.1233 PU

IG2_Q = -0.2483 PU

x∆
0 =






0.0441
− 0.0769
0.0424






xB4
1 = xB4

0 − x∆
0

IG1_Q = −fT12_Q1_nef(xT12_i) − fT13_Q1_nef(xT13_i)

IG1_P = −fT12_P1_nef(xT12_i) − fT13_P1_nef(xT13_i)

IG2_Q = −fT12_Q2_nef(xT12_i) − fT23_Q1_nef(xT23_i)
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C-3: Summary of Results

Bus 1

Bus Voltage Magnitude 1.0 PU

Bus Voltage Angle 0.0 rad

G1 Real/Reactive Power -0.1233 PU -0.1451 PU

T12 Real/Reactive Power -0.1437 PU -0.0423 PU

T13 Real/Reactive Power 0.2671 PU 0.1874 PU

Bus 2

Bus Voltage Magnitude 1.0500 PU

Bus Voltage Angle 0.0761 rad

G2 Real/Reactive Power -0.5 PU -0.2483 PU

T12 Real/Reactive Power 0.1471 PU 0.0558 PU

T23 Real/Reactive Power 0.3529 PU 0.1925 PU

Bus 3

Bus Voltage Magnitude 0.9502 PU

Bus Voltage Angle -0.0464 rad

L3 Real/Reactive Power 0.6000 PU 0.3000 PU

T13 Real/Reactive Power -0.2617 PU -0.1661 PU

T23 Real/Reactive Power -0.3383 PU -0.1339 PU
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Appendix D: Modified Load Flow Example

Appendix C demonstrated how a system can be built and solved for a conventional

load flow problem. This example demonstrates how control signals such as real and reactive

power sharing signals can be incorporated in the load flow solution. In particular, this

example connects two parallel generators to a load via a transmission line. A conventional

load flow fails for this example because the generator bus voltage magnitude is

overdetermined and there is no relationship for sharing reactive power. In this example,

information variables are used to force each generator to be proportionally loaded and have

the same power angle.

Figure D-1: Parallel Generator Load Flow Example

D-1: Device Definitions

In addition to the transmission line and PQ load defined in Appendix C, two more

devices must be defined: A slack bus generator incorporating the load sharing information,

and a PQ generator employing the load sharing.
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D-1.1: VDS Generator (Slack Bus)

Interface Variables

Terminal Potential Variable Flow Variable (KCL Group) Type

VQ V (export) Q (import) (0) Normal
DP D (export) P (import) (0) Normal
p p (export) Information
q q (export) Information

The import ximp and export xexp vectors are defined by:

Parameters

VG Scheduled Generator Voltage
DG Scheduled Generator Angle
PB Scheduled Generator Power Base

Equations

Device Structural Jacobian

The device structural jacobian is given by:

ximp =



Q
P


 xexp =






V
D
p
q






V = VG

D =DG

p = −
P
PB

q =
Q
P

JDS =






0 0
0 0
0 L
N N





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Device Jacobian

The device jacobian is given by:

JD =










0 0
0 0

0
1

PB

1
P

−
Q

P2









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D-1.2: PQS Generator

Interface Variables

Terminal Potential Variable Flow Variable (KCL Group) Type

VQ V (import) Q (export) (0) Normal
DP D (import) P (export) (0) Normal
p p (import) Information
q q (import) Information

The import ximp and export xexp vectors are defined by:

Parameters

PB Scheduled Generator Power Base

Equations

Device Structural Jacobian

The device structural jacobian is given by:

Device Jacobian

The device jacobian is given by:

ximp =






V
D
p
q






xexp =



Q
P




P = −PB p

Q = −PB pq

JDS =



0 0 N N
0 0 L 0





JD =




0 0 −PBq −PB p

0 0 −PB 0



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D-2: Network Description

Figure D-2-1 is a block diagram of the system represented in Figure D-1:

Figure D-2-1: Parallel Generator Example Block Diagram

D-2.1: Network Specification

Using the same variable labeling convention as in Appendix C, the devices and

network are specified by:

VDS Generator G1

Terminal Potential Variable Flow Variable Node

VQ xG1_V_nep xG1_Q_nif 1
DP xG1_D_nep xG1_P_nif 3
p xG1_p_iep 5
q xG1_q_iep 6

Parameters:

VG 1.05 PU
DG 0.00 rad
PB 1.00 PU

Import Vector:

xG1_i =




xG1_Q_nif

xG1_P_nif




= 


IG1_Q

IG1_P




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PQS Generator G2

Terminal Potential Variable Flow Variable Node

VQ xG2_V_nip xG1_Q_nef 1
DP xG2_D_nip xG1_P_nef 3
p xG2_p_iip 5
q xG2_q_iip 6

Parameters:

PB 0.50 PU

Import Vector:

Transmission Line T12

Terminal Potential Variable Flow Variable Node

VQ1 xT12_V1_nip xT12_Q1_nef 1
DP1 xT12_D1_nip xT12_P1_nef 3
VQ2 xT12_V2_nip xT12_Q2_nef 2
DP2 xT12_D2_nip xT12_P2_nef 4

Parameters:

R 0.05 PU
X 0.20 PU

Import Vector:

xG2_i =








xG2_V_nip

xG2_D_nip

xG2_p_iip

xG2_q_iip








=








V1

V3

V5

V6








xT12_i =








xT12_V1_nip

xT12_D1_nip

xT12_V2_nip

xT12_D2_nip








=








V1

V3

V2

V4







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PQ Load L3

Terminal Potential Variable Flow Variable Node

VQ xL3_V_nip xL3_Q_nef 2
DP xL3_D_nip xL3_P_nef 4

Parameters:

PL 0.60 PU
QL 0.10 PU

Import Vector:

xL3_i =




xL3_V_nip

xL3_D_nip




= 


V2

V4




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D-2.2: System Variables and Equations

There are eight system variables and equations associated with this example. There

are the six node potentials plus two import flow variables ordered in the following manner:

The eight system equations are composed of four Kirchhoff Current Law equations

and four potential equations:

xsys = [V1 V2 V3 V4 V5 V6 IG1_Q IG1_P]
T

g1(xsys) = IG1_Q + xG2_Q_nef + xT12_Q1_nef

g2(xsys) = xL3_Q_nef + xT12_Q2_nef

g3(xsys) = IG1_P + xG2_P_nef + xT12_P1_nef

g4(xsys) = xL3_P_nef + xT12_P2_nef

g1_G1_V(xsys) = V1 − xG1_V_nep

g3_G1_D(xsys) = V3 − xG1_D_nep

g5_G1_p(xsys) = V5 − xG1_p_iep

g6_G1_q(xsys) = V6 − xG1_q_iep
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D-2.3: System Structural Jacobian Matrix

Using the device structural jacobian matrices along with the system equations, the

following system structural jacobian can be created:

Applying the system reduction algorithms, five blocks can be identified: two 1×1

element blocks and three 2×2 element blocks:

Block 1

System Row: 5

System Column: 1

System Variable: V1

Equation:

Structural Jacobian:

JSS =













N N N N N N I 0
N N N N 0 0 0 0
N N N N L 0 0 I
N N N N 0 0 0 0
I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 L
0 0 0 0 0 I N N













g1_G1_V(xsys) = V1 − xG1_V_nep

JB1 = [I ]
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Block 2

System Row: 6

System Column: 3

System Variable: V3

Equation:

Structural Jacobian:

Block 3

System Rows: 2 4

System Columns: 2 4

System Variables: V2 V4

Equations:

Structural Jacobian:

g3_G1_D(xsys) = V3 − xG1_D_nep

JB2 = [I ]

g2(xsys) = xL3_Q_nef + xT12_Q2_nef

g4(xsys) = xL3_P_nef + xT12_P2_nef

JB3 =



N N
N N




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Block 4

System Rows: 3 7

System Columns: 5 8

System Variables: V5 IG1_P

Equations:

Structural Jacobian:

Block 5

System Rows: 1 8

System Columns: 6 7

System Variables: V6 IG1_Q

Equations:

Structural Jacobian:

g3(xsys) = IG1_P + xG2_P_nef + xT12_P1_nef

g5_G1_p(xsys) = V5 − xG1_p_iep

JB4 =



L I
I L





g1(xsys) = IG1_Q + xG2_Q_nef + xT12_Q1_nef

g6_G1_q(xsys) = V6 − xG1_q_iep

JB5 =



N I
I N




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D-2.4: Solving the System

Applying the equations for the first two blocks yields:

The remaining blocks are systems of 2×2 equations and unknowns. Blocks 3 and 5

are nonlinear and must be solved iteratively. Block 4 is linear block requiring only one

iteration:

Block 3:

n V2 V4 g2() g4()

0 1.0000 0.0000 -0.1353 0.5414

1 1.0000 -0.1095 0.0293 0.0085

2 0.9933 -0.1105 2.017e-4 0.841e-4

3 0.9933 -0.1105 1.046e-8 0.569e-8

Block 4:

n V5 IG1_P g3() gG1_p()

0 1.0000 1.0000 1.1188 2.0000

1 0.4125 -0.4125 0.0000 0.0000

Block 5:

n V6 IG1_Q g1() gG1_q()

0 0.0000 0.0000 0.1750 0.0000

1 0.2828 -0.1167 0.000e-8 -0.000e-8

V1 = fG1_V_nep







0
0






= 1.05 PU

V3 = fG1_D_nep







0
0






= 0.0 rad
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D-3: Summary of Results

Bus 1

Bus Voltage Magnitude 1.05 PU

Bus Voltage Angle 0.00 rad

G1 Real/Reactive Power -0.4125 PU -0.1167 PU

G2 Real/Reactive Power -0.2063 PU -0.0583 PU

T12 Real/Reactive Power  0.6188 PU 0.1750 PU

Bus 2

Bus Voltage Magnitude 0.9933 PU

Bus Voltage Angle -0.1105 rad

L3 Real/Reactive Power 0.6000 PU 0.1000 PU

T12 Real/Reactive Power -0.6000 PU -0.1000 PU

Information Node 5 (p)

Magnitude 0.4125

Information Node 6 (q)

Magnitude 0.2828
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Appendix E:  Waveform Examples

E-1 Examples of Waveform Types

While the possibilities of waveform definitions is endless, this thesis will concentrate

on the following waveform types:

Waveform Type Code

Undefined 0

Data Series 1

Fourier Series 2

Legendre Series 3

Polynomials 4

Matlab Polynomials 5

Chebyshev Series 6

The code in the above table refers to the value of the type element in the WAVEFORM

structure.

E-1.1 Data Series

A data series consists of n equally spaced samples of the waveform stored in an array

of double precision floating point numbers. The first coefficient is associated with the

value of the waveform at the beginning of the time interval and the last coefficient is

associated with the value of the waveform at the end of the time interval. Each element of

the array is given by:

A data series representation is primarily used for plotting the time history of

variables and for calculating waveform operators which would prove difficult with other

waveform types.

ci = f(ti)

ti = t0 +
i − 1
n − 1

(t1 − t0)

i = 1,2,…,n

- 226 -



E-1.2 Polynomial Expansion

A polynomial expansion consists of n coefficients of a polynomial representation of

the waveform normalized over the interval [-1 1].

Polynomial expansions are useful for evaluating switching operators described

above.

A Matlab Polynomial expansion is expressed in descending order:

E-1.3 Orthogonal Function Series

Orthogonal Function Series can be an excellent means for representing waveforms.

In an orthogonal series representation, the value of the coefficient of a given order of the

characteristic function is independent of the number of terms in the orthogonal series. This

means truncating an orthogonal series by eliminating higher order coefficients will still

result in the best possible fit with the remaining coefficients.

In general, an orthogonal series representation is of the form:

where Fi(x) is the ith order characteristic function of the orthogonal function series

with respect to the weighting function r(x). These characteristic functions observe the

following property:

f(x) = ∑
i = 1

n

cix
i −1

x = −1 + 2
t − t0

t1 − t0

f(x) = ∑
i = 1

n

cix
n − i

f(x) = ∑
i = 1

n

ciFi −1(x)

x ∈ [ x0 x1]
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With this property, the coefficients ci of the series can be found:

E-1.3.1 Fourier Series

Perhaps the most widely used orthogonal function series is the Fourier Series.

Unfortunately, the Fourier Series is unsuitable for dynamic simulations. To see why, one

need only look at the manner in which a function is expressed in a Fourier Series:

Notice that at x = 1 and x = -1 sin(iπx) = 0 and cos(iπx) = (-1)i . Consequently

f(1) = f(-1). In other words, the starting value and ending value of any waveform

represented by a fourier series is forced to be identical. In dynamic simulations however,

we often have equations of the form:

This equation is normally evaluated by integration:

⌠
⌡
x0

x1

r(x)Fm(x)Fn(x)dx = 0 for m ≠ n

⌠
⌡
x0

x1

r(x)Fm(x)Fm(x)dx =G(m)

ci =
1

G(i − 1)
⌠
⌡
x0

x1

r(x)f(x)Fi −1(x)dx

f(x) = A0 + ∑
i = 1

n

Ai cos(iπx) + ∑
i = 1

n

Bi sin(iπx)

x = −1 + 2
t − t0

t1 − t0

dy
dt
= f(z , t)

y = y0 + ⌠⌡
t0

t

f(z , τ)dτ
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where y0 is the value of the waveform y at the beginning of the interval. If y is

represented by a Fourier Series, then y evaluated at the end of the interval will also be y0.

In other words, while the value of a state variable may change within the interior of a

time interval, at the boundaries, the value is constrained to be a constant independent of

the length of the time interval. This constraint is artificial and not a property of real

physical systems.

E-1.3.2 Legendre Series

Legendre Series use legendre polynomials to form the basis of an orthogonal

function series over the interval [-1 1]. Legendre polynomials Li(x) of order i are defined

by the following equations:

The first six Legendre polynomials are readily found to be:

Li(x) =
ui(x)
ui(1)

for i even

Li(x) =
vi(x)
vi(1)

for i odd

ui(x) = 1 −
i(i + 1)

2!
x 2 +

i(i − 2) (i + 1) (i + 3)
4!

x 4 −
i(i − 2) (i − 4) (i + 1) (i + 3) (i + 5)

6!
x 6 +…

vi(x) = x −
(i − 1) (i + 2)

3!
x 3 +

(i − 1) (i − 3) (i + 2) (i + 4)
5!

x 5 −

(i − 1) (i − 3) (i − 5) (i + 2) (i + 4) (i + 6)
7!

x 7 +…

L0(x) = 1

L1(x) = x

L2(x) =
1
2
(3x 2 − 1)

L3(x) =
1
2
(5x 3 − 3x)
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Legendre Series also obey the following recursion formula

An nth order legendre series representation of a waveform is given by:

where:

The time interval [t0 t1] can be mapped to the interval [-1 1] with the following

transformation:

The coefficients ci can be found by integration:

E-1.3.3 Chebyshev Series

Chebyshev Series use Chebyshev polynomials to form the basis of an orthogonal

function series over the interval [-1 1]. Chebyshev polynomials Ti(x) of order i are

defined by the following equations:

L4(x) =
1
8
(35x 4 − 30x 2 + 3)

L5(x) =
1
8
(63x 5 − 70x 3 + 15x)

(n + 1)Ln +1(x) = (2n + 1)xLn(x) − nLn −1(x)

f(x) = ∑
i = 1

n

ciLi −1(x)

x0 = −1

x1 = 1

r(x) = 1

Fi(x) = Li(x)

G(i) =
2

2i + 1

x = −1 + 2
t − t0

t1 − t0

ci =
2i − 1

2
⌠
⌡
−1

1

f(x)Li −1(x)dx
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The following three Chebyshev polynomials are given by:

An nth order Chebyshev Series representation of a waveform is given by:

where

the weighting function r(x) is given by:

and:

T0(x) = 1

T1(x) = x

Ti +1(x) = 2xTi(x) −Ti −1(x) for i ≥ 1

T2(x) = 2x 2 − 1

T3(x) = 4x 3 − 3x

T4(x) = 8x 4 − 8x 2 + 1

f(x) = ∑
i = 1

n

ciTi −1(x)

x0 = −1

x1 = 1

r(x) =
1

√1 − x 2

Fi(x) = Ti(x)

G(0) = π

G(m) =
π
2

for m > 0
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E-2 Waveform Conversions

This section describes how to convert a waveform consisting of a vector of

coefficients of order n1 to a waveform of possibly a different type composed of a vector of

coefficients of another order n2. In all cases, the conversion is a linear matrix operator.

Hence for given values of n1 and n2, the conversion matrix need only be calculated once.

From here on, Li(x) refers to a vector containing the polynomial coefficients of the ith

order Legendre Polynomial. Li(xj) refers to the ith order Legendre Polynomial evaluated at

xj. Likewise, Ti(x) refers to a vector containing the polynomial coefficients of the ith order

Chebyshev Polynomial. Ti(xj) refers to the ith order Chebyshev Polynomial evaluated at xj.

E-2.1 Legendre Series

E-2.1.1 Legendre Series to Data Series

Converting a Legendre Series of order n1 to a data series of order n2 requires the

construction of the following matrix:

If Cl is the vector of the Legendre Series coefficients and Cd is the vector of data

series points, the following relation holds:

E-2.1.2 Legendre Series to Legendre Series

Converting a Legendre Series of order n1 to order n2 requires only the truncation of

terms if n1 > n2 or the insertion of zeros in the higher order terms if n1 < n2.

ALD =













1 L1(x0) L2(x0) … Ln1 −1(x0)

1 L1(x1) L2(x1) … Ln1 −1(x1)

1 L1(x2) L2(x2) … Ln1 −1(x2)

. . . .

. . . .

. . . .
1 L1(xn2 −1) L2(xn2 −1) … Ln1 −1(xn2 −1)













xi = −1 + 2
i

n2 − 1

Cd = ALDCl
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E-2.1.3 Legendre Series to Chebyshev Series

Converting a Legendre Series of order n1 to a Chebyshev Series of order n2 first

requires the truncation or padding with zeros of the Legendre series to order n2. The

resulting Legendre Series should then be multiplied by the following upper trianglular

matrix:

where Li(x) is a vector of order n2 holding the polynomial coefficients of the ith order

Legendre Polynomial and Ti(x) is a vector of order n2 holding the polynomial coefficients

of the ith order Chebyshev Polynomial.

E-2.1.4 Legendre Series to Polynomial Expansion

Converting a Legendre Series of order n1 to a polynomial expansion of order n2 first

requires the truncation or padding with zeros of the Legendre series to order n2. The

resulting Legendre Series vector should then be multiplied by the following upper

triangular matrix:

where Li(x) is a vector of order n2 holding the polynomial coefficients of the ith order

Legendre Polynomial.

ALT = AT
−1AL

AL = [L0(x) L1(x) L2(x) … Ln2 −1(x)]

AT = [T0(x) T1(x) T2(x) … Tn2 −1(x)]

AL = [L0(x) L1(x) L2(x) … Ln2 −1(x)]
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E-2.2 Chebyshev Series

E-2.2.1 Chebyshev Series to Data Series

Converting a Chebyshev Series of order n1 to a data series of order n2 requires the

construction of the following matrix:

If Ct is the vector of the Chebyshev Series coefficients and Cd is the vector of data

series points, the following relation holds:

E-2.2.2 Chebyshev Series to Legendre Series

Converting a Chebyshev Series of order n1 to a Legendre Series of order n2 first

requires the truncation or padding with zeros of the Chebyshev series to order n2. The

resulting Chebyshev Series should then be multiplied by the following upper trianglular

matrix:

where Li(x) is a vector of order n2 holding the polynomial coefficients of the ith order

Legendre Polynomial and Ti(x) is a vector of order n2 holding the polynomial coefficients

of the ith order Chebyshev Polynomial.

ATD =













1 T1(x0) T2(x0) … Tn1 −1(x0)

1 T1(x1) T2(x1) … Tn1 −1(x1)

1 T1(x2) T2(x2) … Tn1 −1(x2)

. . . .

. . . .

. . . .
1 T1(xn2 −1) T2(xn2 −1) … Tn1 −1(xn2 −1)













xi = −1 + 2
i

n2 − 1

Cd = ATDCt

ALT = AL
−1AT

AL = [L0(x) L1(x) L2(x) … Ln2 −1(x)]

AT = [T0(x) T1(x) T2(x) … Tn2 −1(x)]
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E-2.2.3 Chebyshev Series to Chebyshev Series

Converting a Chebyshev Series of order n1 to order n2 requires only the truncation

of terms if n1 > n2 or the insertion of zeros in the higher order terms if n1 < n2.

E-2.2.4 Chebyshev Series to Polynomial Expansion

Converting a Chebyshev Series of order n1 to a polynomial expansion of order n2

first requires the truncation or padding with zeros of the Chebyshev series to order n2.

The resulting Chebyshev Series vector should then be multiplied by the following upper

triangular matrix:

where Ti(x) is a vector of order n2 holding the polynomial coefficients of the ith order

Chebyshev Polynomial.

AT = [T0(x) T1(x) T2(x) … Tn2 −1(x)]
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E-2.3 Polynomial Expansion

E-2.3.1 Polynomial Expansion to Data Series

Converting a polynomial expansion of order n1 to a data series of order n2 requires

the construction of the following matrix:

If Cp is the vector of the polynomial coefficients and Cd is the vector of data series

points, the following relation holds:

E-2.3.2 Polynomial Expansion to Legendre Series

Converting a polynomial expansion of order n1 to a Legendre Series of order n2

requires first converting to a Legendre series of order n1 then converting the Legendre

Series to order n2. Recall that the matrix for converting from a Legendre Series to a

Polynomial is upper triangular. Hence one only needs to use backward substitution to

solve for the Legendre Series coefficients:

E-2.3.3 Polynomial Expansion to Chebyshev Series

Converting a polynomial expansion of order n1 to a Chebyshev Series of order n2

requires first converting to a Chebyshev series of order n1 then converting the Chebyshev

APD =













1 x0 x0
2 … x0

n1 −1

1 x1 x1
2 … x1

n1 −1

1 x2 x2
2 … x2

n1 −1

. . . .

. . . .

. . . .

1 xn2 −1 xn2 −1
2 … xn2 −1

n1 −1













xi = −1 + 2
i

n2 − 1

Cd = APDCp

AL = [L0(x) L1(x) L2(x) … Ln2 −1(x)]

Cp = ALCl
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Series to order n2. Recall that the matrix for converting from a Chebyshev Series to a

Polynomial is upper triangular. Hence one only needs to use backward substitution to

solve for the Chebyshev Series coefficients:

E-2.3.4 Polynomial Expansion to Polynomial Expansion

Converting a polynomial expansion to another polynomial expansion of higher

order only requires setting the higher order terms to zero. Converting to a lower number

of terms requires more effort. The best method is to convert to an orthogonal function

series, truncate, and convert back. Since all of these operations are linear matrix

operations, the conversion matrix need only be calculated once. For this conversion,

either the Legendre Series or the Chebyshev series would be appropriate since the type

conversions to and from the series solution does not add any truncation error (The

truncation error is solely due to the truncation of the Legendre Series or Chebyshev series

and not due to the conversions).

AT = [T0(x) T1(x) T2(x) … Tn2 −1(x)]

Cp = ATCt
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E-2.4 Data Series

E-2.4.1 Data Series to Data Series

There are many methods for converting a data series to another data series with a

different number of coefficients. Two common interpolation schemes for performing this

conversion are linear interpolation and cubic splines. These methods can be found in

many numerical methods textbooks and will not be described here.

E-2.4.2 Data Series to Legendre Series

If n1 ≥ n2, a Data Series can be converted to a Legendre Series by taking the

pseudo-inverse of the matrix converting a Legendre Series to a Data Series. If n1 < n2, the

Data Series can be converted in a similar manner to a Legendre Series of order n1 padded

with zeros to order n2.

If Cd is the vector of data series points and Cl is the vector of Legendre Series

Coefficients, the following relation holds:

E-2.4.3 Data Series to Chebyshev Series

Converting a Data Series to a Chebyshev Series can be done in the same manner as

the conversion to a Legendre Series:

ALD =













1 L1(x0) L2(x0) … Ln2 −1(x0)

1 L1(x1) L2(x1) … Ln2 −1(x1)

1 L1(x2) L2(x2) … Ln2 −1(x2)

. . . .

. . . .

. . . .
1 L1(xn1 −1) L2(xn1 −1) … Ln2 −1(xn1 −1)













xi = −1 + 2
i

n1 − 1

Cd = ALDCl

Cl = (ALD
T ALD)

−1
ALD

T Cd
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If Cd is the vector of data series points and Cc is the vector of Chebyshev Series

Coefficients, the following relation holds:

E-2.4.4 Data Series to Polynomial Expansion

Converting a data series to a polynomial expansion of equal or less order using a

least squares fit is a straight forward process. If the number of points in the data series n1

is equal to or less than the number of points in the polynomial n2, the resulting

polynomial will pass through each point of the data series. If larger, the polynomial will

not necessarily pass through all of the data series points, but will be a least square

approximation.

For n1 ≤ n2:

For this case, the problem is to solve for the coefficients of the polynomial cpi for

i ≤ n1. For the higher coefficients (i > n1), cpi = 0. In the following discussion, let Cd be

the vector of n1 data series coefficients and Cp be the vector containing the first n1

polynomial coefficients. Define the n1 × n1 matrix A as follows:

ATD =













1 T1(x0) T2(x0) … Tn2 −1(x0)

1 T1(x1) T2(x1) … Tn2 −1(x1)

1 T1(x2) T2(x2) … Tn2 −1(x2)

. . . .

. . . .

. . . .
1 T1(xn1 −1) T2(xn1 −1) … Tn2 −1(xn1 −1)













xi = −1 + 2
i

n1 − 1

Cd = ATDCc

Cc = (ATD
T ATD)

−1
ATD

T Cd
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Matrix APD is square, clearly has rank n1, and therefore is invertible. Consequently

solving for Cp is straight forward:

For n1 > n2:

If the number of data points is greater than the number of polynomials, the number

of columns in the APD matrix described above would have n2 columns and n1 rows. APD

would clearly not be invertible. The pseudo-inverse of APD can be calculated and

provides the least squares fit of the data series:

APD =













1 x0 x0
2 … x0

n1 −1

1 x1 x1
2 … x1

n1 −1

1 x2 x2
2 … x2

n1 −1

. . . .

. . . .

. . . .

1 xn1 −1 xn1 −1
2 … xn1 −1

n1 −1













xi = −1 + 2
i

n1 − 1

APDCp =Cd

Cp = APD
−1 Cd

Cp = (APD
T APD)

−1
APD

T Cd
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E-3 Waveform Arithmetic

This section describes how to perform addition, subtraction, multiplication, and

division on the various types of waveforms.

E-3.1 Data Series

Performing waveform arithmetic on data series is very easy. The waveforms are

converted to the proper size and then added, subtracted, multiplied or divided element by

element.

E-3.2 Polynomials

E-3.2.1 Addition/Subtraction

Adding or subtracting two polynomial waveforms simply entails converting the two

waveforms to the proper length and adding or subtracting element by element.

E-3.2.2 Multiplication

Multiplying polynomial waveform W of size nw and Y of size ny together to get

polynomial Z of size nw + ny - 1 can be accomplished by constructing the following

matrix of size nw + ny - 1 × nw:

Z can now be truncated or padded with zeros to convert it to the proper length. The

truncation of a polynomial is discussed in section E-2.3.4.

Mp =














Y1 0 0 0 … 0 0

Y2 Y1 0 0 … 0 0

Y3 Y2 Y1 0 … 0 0

Y4 Y3 Y2 Y1 … 0 0

. . . . . .

. . . . . .

. . . . . .
0 0 0 0 … Yny

Yny −1

0 0 0 0 … 0 Yny














Z =MpW
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E-3.2.3 Division

Dividing two polynomial expansions can be difficult, particularly if the

denominator polynomial has one or more zero crossings. In general, there is no simple

method for performing the division, although the recursion process described in this

section will work. Define the problem to be:

There are two parts to the problem. The first task is to use synthetic division until

the numerator of the remainder is of size nc -1 or less. The second task is to convert the

remaining fraction into another polynomial expansion by a process similar to synthetic

division, but proceeding from the constant term and working up in order.

Synthetic division is the process of dividing one polynomial by another until the

remainder is of order 1 less than the denominator.

Initially, di is set equal to bi. After the first iteration, di is set equal to the remainder

rl. The process is repeated until nd = nc - 1. At this point, the direction of the division is

reversed and we get:

∑
i = 1

ny

Yix
i −1 =

∑
j = 1

nb

Bjx
j −1

∑
k = 1

nc

Ckx
k −1

∑
l = 1

nd

dlx
l −1

∑
k = 1

nc

ckx
k −1

=
dnd

cnc

x
nd −nc +

∑
l = 1

nd −1

rlx
l −1

∑
k = 1

nc

ckx
k −1

rl = dl −
dnd

cnc

cl

yf(nd −nc +1) =
dnd

cnc

∑
l = 1

nd

dlx
l −1

∑
k = 1

nc

ckx
k −1

=
d1

c1

+ x
∑

l = 1

nd −1

rlx
l −1

∑
k = 1

nc

ckx
k −1
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In this manner, we can express the remaining fraction as another polynomial

expansion. The actual values for Yi are equal to the sum of the components from the

forward and backwards synthetic division.

Note that if the denominator has a zero over the interval [-1,1], the backwards

synthetic division will result in a diverging series.

rl −1 = dl −
d1

c1

cl
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E-3.3 Legendre Series

E-3.3.1 Addition/Subtraction

Adding or subtracting two Legendre Series waveforms simply entails converting the

two waveforms to the proper length and adding or subtracting element by element.

E-3.3.2 Multiplication

Multiplying two Legendre Series together can be accomplished in two ways. The

first way is to convert the Legendre Series to polynomial expansions, multiply the two

together, then convert the product to the Legendre Series of the proper size. The second

method uses the recursion formula for the Legendre series to assist in the process:

To multiply Legendre Series Y of size ny by the Legendre Series W of size nw to

obtain the Legendre Series Z of size nz = ny + nw - 1, Y must first be converted to a

polynomial expansion Yp of size ny:

The recursion formula for the Legendre Series is given by:

which can be translated into the following matrix for multiplying a given Legendre

Series of size nz by x:

AL = [L0(x) L1(x) L2(x) … Lny −1(x)]

Yp = ALY

xLi(x) =




i
2i + 1




Li −1(x) +





i + 1
2i + 1




Li +1(x)
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If we define the vector Yp1 to be Yp padded with zeros such that it is of size nz, we

can define the following nz × nw matrix:

The final nz × nw multiplication matrix Amll can now be found:

Of course Z may have to be truncated or padded with zeros to convert it to the

desired length.

E-3.3.3 Division

There is no straight forward method for dividing two legendre series. The easiest

way appears to be converting to polynomial expansions, performing the divison, then

converting back to the legendre series.

AXL =
























0
1
3

0 0 … 0 0

1 0
2
5

0 … 0 0

0
2
3

0
3
7

… 0 0

0 0
3
5

0 … 0 0

. . . . . .

. . . . . .

. . . . . .

0 0 0 0 …
nz − 2

2(nz − 2) + 1
0

0 0 0 0 … 0
nz − 1

2(nz − 1) + 1

0 0 0 0 …
nz − 1

2(nz − 2) + 1
0
























Ampl =

 Yp1 AXLYp1 AXLAXLYp1 … AXL

nw −1
Yp1




Amll = AmplAL

Z = AmllW
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E-3.4 Chebyshev Series

E-3.4.1 Addition/Subtraction

Adding or subtracting two Chebyshev Series waveforms simply entails converting

the two waveforms to the proper length and adding or subtracting element by element.

E-3.4.2 Multiplication

Multiplying two Chebyshev Series together can be accomplished in two ways. The

first way is to convert the Chebyshev Series to polynomial expansions, multiply the two

together, then convert the product to the Chebyshev Series of the proper size. The second

and preferred method uses an alternate definition of a Chebyshev Polynomial to assist in

the process:

From this definition, the product of two Chebyshev Polynomials can easily be

derived:

To multiply Chebyshev Series Y of size ny by the Chebyshev Series W of size nw to

obtain the Chebyshev Series Z of size nz = ny + nw - 1, three nz × nw matrices should first

be constructed:

Tn(x) = cos(n cos−1(x))

T−n(x) = Tn(x)

Tn(x)Tm(x) = cos(n cos−1(x))cos(m cos−1(x))

Tn(x)Tm(x) =
1
2
(cos((n +m)cos−1(x)) + cos((n −m)cos−1(x)))

Tn(x)Tm(x) =
1
2
(Tn +m(x) +Tn −m(x))
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The final nz × nw multiplication matrix Amtt is given by:

Y =












Y1

Y2

Y3

.

.

.
Yny












Amt1 =














Y1 0 0 … 0 0

Y2 Y1 0 … 0 0

Y3 Y2 Y1 … 0 0

. . . . .

. . . . .

. . . . .
0 0 0 … Yny

Yny −1

0 0 0 … 0 Yny














Amt2 =









Y1 Y2 Y3 …
Y2 Y3 Y4 …
Y3 Y4 Y5 …
. . .
. . .
. . .









Amt3 =












0 0 0 0 …
0 Y1 Y2 Y3 …
0 0 Y1 Y2 …
0 0 0 Y1 …
. . . .
. . . .
. . . .












Amtt =
1
2
(Amt1 +Amt2 +Amt3)

Z = AmttW
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Of course Z may have to be truncated or padded with zeros to convert it to the

desired length.

E-3.4.3 Division

There is no straight forward method for dividing two chebyshev series. The easiest

way appears to be converting to polynomial expansions, performing the divison, then

converting back to the chebyshev series.
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E-4 Waveform Functions

E-4.1 Data Series

E-4.1.1 Trigonometric and Exponential Functions

All trigonometric and exponential functions can be performed point by point on the

data series coefficients.

E-4.1.2 Integration and Differentiation

There are a number of techniques for integrating or differentiating Data Series. All

are by their nature approximations and can suffer from numerical instability problems

associated with conventional simulations. One simple method of integration employs the

trapezoidal rule:

With this matrix, the integral equation:

SDD =


























0 0 0 0 0 … 0 0 0
h
2

h
2

0 0 0 … 0 0 0

h
2

h
h
2

0 0 … 0 0 0

h
2

h h
h
2

0 … 0 0 0

h
2

h h h
h
2

… 0 0 0

. . . . . . . .

. . . . . . . .

. . . . . . . .
h
2

h h h h …
h
2

0 0

h
2

h h h h … h
h
2

0

h
2

h h h h … h h
h
2


























h =
2

n − 1
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Becomes the matrix operation:

The vector Y may be now converted to a different length if so desired.

Differentiating a Data series can be done in a number of ways. The secant method

can be easily implemented with the following matrix:

Another approach is to choose a differentiation matrix such that it is consistent with

the integration matrix. Consistency is defined by the following matrix equation:

where

Y = Y0 + ⌠
⌡

τ = −1

x

Wdτ

Y = SDDW +Y0

ADD1 =
1
h


















−1 1 0 0 0 … 0 0 0

−
1
2

0
1
2

0 0 … 0 0 0

0 −
1
2

0
1
2

0 … 0 0 0

0 0 −
1
2

0
1
2

… 0 0 0

. . . . . . . .

. . . . . . . .

. . . . . . . .

0 0 0 0 0 … −
1
2

0
1
2

0 0 0 0 0 … 0 − 1 1


















h =
1

n − 1

SDDADD2 =M
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The M matrix reflects the fact that differentiating a data series will destroy the

subsequent constant of integration. SinceSDD is generally singular, only its

pseudo-inverse can be taken:

This matrix actually has a very simple construction:

dxx is equal to the the negative sum of all the other terms in thexth row. As a

consequence, all of the row sums ofDDD2 are equal to zero andDDD2 is singular.

E-4.1.3 Switching Functions

All switching functions can be performed point by point on the data series

coefficients.

M =










0 0 0 0 …
−1 1 0 0 …
−1 0 1 0 …
−1 0 0 1 …
. . . .
. . . .
. . . .










DDD2 = (SDD
T SDD)

−1
SDD

T M

DDD2 =
1
h


















d11

2n −3
n

−
2n −5

n
2n −7

n
−

2n −9
n

…

−
1
n

d22

2n −5
n

−
2n −7

n
2n −9

n
…

1
n

−
3
n

d33

2n −7
n

−
2n −9

n
…

−
1
n

3
n

−
5
n

d44

2n −9
n

…

1
n

−
3
n

5
n

−
7
n

d55 …

. . . .

. . . .

. . . .

















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E-4.1.4 Waveform Smoothing

There are times when it may be desirable to remove high spectral content features

of a waveform. One way to do this is to replace the value at each point in the time

domain by the average of the waveform over some interval[x - ,x + ]. This can be

accomplished by defining the following:

whereint(x) is the integer nearestx.

Multiplying a data series byAsmth will return a smoothed version of the data series.

∆ ∆

n∆ = int



∆(n −1)

2




Asmth =
























1
n∆

1
n∆

1
n∆

…
1
n∆

0 0 …

1
n∆ +1

1
n∆ +1

1
n∆ +1

…
1

n∆ +1
1

n∆ +1
0 …

1
n∆ +2

1
n∆ +2

1
n∆ +2

…
1

n∆ +2
1

n∆ +2
1

n∆ +2
…

. . . . . .

. . . . . .

. . . . . .
1

2n∆

1
2n∆

1
2n∆

…
1

2n∆

1
2n∆

1
2n∆

…

0
1

2n∆

1
2n∆

…
1

2n∆

1
2n∆

1
2n∆

…

. . . . . .

. . . . . .

. . . . . .























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E-4.2 Polynomial Expansion

E-4.2.1 Trigonometric and Exponential Functions

There is often no direct way of evaluating a trigonometric or expontential function

of a polynomial expansion. Instead, the function is performed on a data series converted

from the argument polynomial. The resulting polynomial is then reconverted back into a

polynomial.

E-4.2.2 Integration and Differentiation

Integrating a polynomialY of size ny results in another polynomialZ of size

nz = ny + 1. Thenz × ny integration matrixSDP is given by:

The integral is evaluated by:

Of course,Z may be converted to a polynomial of a different size if desired.

Differentiating a polynomialY of size ny results in another polynomialZ of size

nz = ny - 1. Thenz × ny differentiation matrixADP is given by:

SDP =
























−1
1
2

−
1
3

1
4

…
(−1)ny −1

ny −1
(−1)ny

ny

1 0 0 0 … 0 0

0
1
2

0 0 … 0 0

0 0
1
3

0 … 0 0

0 0 0
1
4

… 0 0

. . . . . .

. . . . . .

. . . . . .

0 0 0 0 …
1

ny −1
0

0 0 0 0 … 0
1
ny
























Z = SDPY +Z0
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The Differential is evaluated by:

E-4.2.3 Switching Functions

Switching functions are those which produce a Polynomial waveformY which is

composed ofm pieces of other Polynomial waveforms. Letfj be the Polynmomial

representation of thejth piece ofY. Let x0(j) be thex coordinate of the ending point of

thejth piece wherex0(0) = -1 andx0(m) = 1.

DefineYl to be the Legendre Series representation ofY :

Then using the orthogonality property of the Legendre Series:

Now define the following row vector:

ADP =













0 1 0 0 … 0 0
0 0 2 0 … 0 0
0 0 0 3 … 0 0
. . . . . .
. . . . . .
. . . . . .
0 0 0 0 … ny −2 0

0 0 0 0 … 0 ny −1













Z = ADPY

Yl =












Yl1

Yl2

Yl3

.

.

.
Yln












Yli = ∑
j = 1

m ⌠
⌡

x0(j −1)

x0(j)





2i −1
2





fj(x)Li(x)dx

l(x0(j)) = [L0(x0(j)) L1(x0(j)) L2(x0(j)) … Ln −1(x0(j)) Ln(x0(j))]
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With SDL as defined in section E-4.3.2 andAmpl() as defined in section E-3.3.2 the

solution forYl can easily be found:

Now we need only convertYl to a polynomial exansionY:

where

E-4.2.4 Waveform Smoothing

There are times when it may be desirable to remove high spectral content features

of a waveform. One way to do this is to replace the value at each point in the time

domain by the average of the waveform over some interval[x - ,x + ]. This can be

expressed by the following integral:

The only problem with the above equation is near the boundariesx = -1 andx = 1

where the integration interval has the possibility of crossing the boundaries and including

Gl =

















1
2

0 0 … 0

0
3
2

0 … 0

0 0
5
2

… 0

. . . .

. . . .

. . . .

0 0 0 …
2n −1

2

















Yl
T = ∑

j = 1

m

(l(x0(j)) − l(x0(j −1)))SDLAmpl(fj)Gl

Y = ALYl

AL = [L0(x) L1(x) L2(x) … Lny −1(x)]

∆ ∆

∑
i = 1

n

Yix
i −1 =

1
2∆

⌠
⌡

x − ∆

x + ∆

∑
j = 1

n

Wjτ
j −1dτ
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within the average a section of the polynomial outside the defining interval[-1,1]. Hence

the smoothed polynomial should be composed of the following three segments (assuming

):

Note, if then the interval boundaries are given by:

If then there is only one interval and the average of the waveform is returned:

For evaluating the integrals require the definition of shifting a waveform left

or right by . This can be done by constructing the following binonomial matrix:

∆ ≤ 1

−1 ≤ x < −1+ ∆

∑
i = 1

n

Yaix
i −1 =

1
x + ∆ +1

⌠
⌡
−1

x + ∆

∑
j = 1

n

Wjτ
j −1dτ

−1+ ∆ ≤ x ≤ 1− ∆

∑
i = 1

n

Ybix
i −1 =

1
2∆

⌠
⌡

x − ∆

x + ∆

∑
j = 1

n

Wjτ
j −1dτ

1− ∆ < x ≤ 1

∑
i = 1

n

Ycix
i −1 =

1
1− x + ∆

⌠
⌡

x − ∆

1

∑
j = 1

n

Wjτ
j −1dτ

1 < ∆ <2

[−1 , 1− ∆]

[1− ∆ , −1+ ∆]

[−1+ ∆ , 1]

∆ > 2

Y1 =
1
2
⌠
⌡
−1

1

∑
i = 1

n

Wix
i −1dx

Yi = 0 for i > 1

∆ < 2

∆
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This matrix can be generated by the following recursion formula:

Multiplying Bexp element by element by the following matrix will give us the

transformation matrixBshft for shifting a waveform left by .

The tools are now all present.W can be integrated using the integration matrixSDP

defined in section E-4.2.2. The limits of integration for the three segments can be applied

by either usingBshft for the limits involvingx, or by direct evaluation for those limits not

involving x. Dividing by the averaging interval comes next. For the first and third

Bexp=













1 1 1 1 1 …
0 1 2 3 4 …
0 0 1 3 6 …
0 0 0 1 4 …
0 0 0 0 1 …
. . . . .
. . . . .
. . . . .













Bexp(1, j) = 1

Bexp(2:n ,1) = 0

Bexp(i, j) = Bexp(i, j −1) +Bexp(i −1, j −1)

B∆

∆

B∆ =













1 ∆ ∆2 ∆3 ∆4 …
0 1 ∆ ∆2 ∆3 …
0 0 1 ∆ ∆2 …
0 0 0 1 ∆ …
0 0 0 0 1 …
. . . . .
. . . . .
. . . . .













∑
i = 1

n

Mix
i −1 = ∑

j = 1

n

Nj(x + ∆)
j −1

M = BshftN
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intervals, the methods outlined in section E-3.2.3 can be used to divide a polynomial by

another polynomial. Finally, the procedure for generating Switching Functions described

in section E-4.2.3 can be used to generate the coefficients for the solutionY.
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E-4.3 Legendre Series

E-4.3.1 Trigonometric and Exponential Functions

There is often no direct way of evaluating a trigonometric or expontential function

of a Legendre Series. Instead, the function is performed on a data series converted from

the argument Legendre Series. The resulting polynomial is then reconverted back into a

Legendre Series.

E-4.3.2 Integration and Differentiation

Differentiating a Legendre Series can be done easily by differentiating the recursion

formula for the Legendre Series. Recall:

Differentiating:

where:

The goal is to generate the followingn × n matrix:

The columns ofADL can be solved recursively once we define the matrixAXL for

multiplying a Legendre Series Vector byx.

(i +1)L(i +1)(x) = (2i +1)xLi(x) − iL(i −1)(x)

dLi +1(x)
dx

=




2i +1
i +1







x

dLi(x)
dx

+Li(x)



−




i
i +1





dLi −1(x)
dx

dL0(x)
dx

= 0

dL1(x)
dx

= 1 = L0(x)

ADL =




dL0(x)
dx

dL1(x)
dx

dL2(x)
dx

…
dLn −1(x)

dx




xLi(x) =




i
2i +1




Li −1(x) +





i +1
2i +1




Li +1(x)
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Note that the last row ofAXL has been elminated to make the matrix square. This

will not cause any problems since in the recursion formula, the last coefficient of the

vector multiplyingAXL is always zero.

Let ADL(:,j) represent thejth column ofADL. Let I be then × n identity matrix. The

recursion formula states:

OnceADL is constructed, it can be used to calculate derivatives. LetW and Y be

vectors of Legendre Series coefficients of sizen. Then the following statements are

identical:

Of course, thenth coefficient ofY will always be zero since thenth row (as well as

the first column) ofADL will always be populated with zeros.

AXL =

























0
1
3

0 0 … 0 0

1 0
2
5

0 … 0 0

0
2
3

0
3
7

… 0 0

0 0
3
5

0 … 0 0

. . . . . .

. . . . . .

. . . . . .

0 0 0 0 …
n −2

2(n −2) +1
0

0 0 0 0 … 0
n −1

2(n −1) +1

0 0 0 0 …
n −1

2(n −2) +1
0

























ADL(:, i +2) =




2i +1
i +1




(AXLADL(:, i +1) + I(:, i +1)) −





i
i +1




ADL(:, i)

1 ≤ i ≤ n −2

Y =
dW
dx

Y = ADLW
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Integration is a bit more complex. In general, the problem is to solve the following

equation:

First, then+1 × n indefinite integral matrixSIL should be found. The easiest way of

generatingSIL begins by adding an additional column toADL using the same recursion

formula to form then × n+1 matrix ADL1. SIL is simply the pseudo-inverse ofADL1:

The next step is to evaluate the integral atx = -1. This can be done by multplying

the following row vector bySIL:

The first row of SIL contains all zeros. If this row is replaced by-S-1 and the

resulting matrix calledSDL, we have all the pieces for calculating the integral of a

Legendre Series:

Of course, the vectorY may have to be truncated or padded with zeros as required.

E-4.3.3 Switching Functions

Switching functions are those which produce a Legendre Series waveformY which

is composed ofm pieces of other Legendre Series waveforms. Letfj be the legendre

series representation of thejth piece ofY. Let x0(j) be thex coordinate of the ending

point of thejth piece wherex0(0) = -1 andx0(m) = 1.

Let:

Y = Y0+ ⌠
⌡
τ = −1

x

Wdτ

SIL = (ADL1
T ADL1)

−1
ADL1

T

X−1 = [1 −1 1 −1 … (−1)n −1]

S−1 = X−1SIL

Y = SDLW +Y0
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Then using the orthogonality property of the Legendre Series:

Now define the following row vector:

With SDL as defined in section E-4.3.2 andAmll() as defined in section E-3.3.2 the

solution forY can easily be found:

E-4.3.4 Waveform Smoothing

There is no obvious method for performing waveform smoothing in the Legendre

Series spectral domain. Instead, the waveform should be converted to a polynomial

expansion and the methods of section E-4.2.4 employed.

Y =












Y1

Y2

Y3

.

.

.
Yn












Yi = ∑
j = 1

m ⌠
⌡

x0(j −1)

x0(j)





2i −1
2





fj(x)Li(x)dx

l(x0(j)) = [L0(x0(j)) L1(x0(j)) L2(x0(j)) … Ln −1(x0(j)) Ln(x0(j))]

Gl =

















1
2

0 0 … 0

0
3
2

0 … 0

0 0
5
2

… 0

. . . .

. . . .

. . . .

0 0 0 …
2n −1

2

















YT = ∑
j = 1

m

(l(x0(j)) − l(x0(j −1)))SDLAmll(fj)Gl
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E-4.4 Chebyshev Series

E-4.4.1 Trigonometric and Exponential Functions

There is often no direct way of evaluating a trigonometric or expontential function

of a Chebyshev Series. Instead, the function is performed on a data series converted from

the argument Chebyshev Series. The resulting polynomial is then reconverted back into a

Chebyshev Series.

E-4.4.2 Integration and Differentiation

Differentiating a Chebyshev Series can be done easily by differentiating the

recursion formula for the Chebyshev Polynomials. Recall:

Differentiating:

where

The goal is to generate the followingn × n matrix:

The columns ofADT can be solved recursively once we define matrixAXT for

multiplying a Chebyshev Series vector byx.

Ti +1(x) = 2xTi(x) −Ti −1(x)

dTi +1(x)
dx

= 2x
dTi(x)

dx
+2Ti(x) −

dTi −1(x)
dx

dT0(x)
dx

= 0

dT1(x)
dx

= 1

ADT =




dT0(x)
dx

dT1(x)
dx

dT2(x)
dx

…
dTn −1(x)

dx




xTi(x) =
1
2
(Ti −1(x) +Ti +1(x))
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Note that the last row ofAXT has been eliminated to make the matrix square. This

will not cause any problems since in the recursion formula which follows, the last

coefficient of the vector multiplyingAXT is always zero.

Let ADT(:,j) represent thejthe column ofADT. Let I be then × n identity matrix.

The recursion formula states:

OnceADT has been constructed, it can be used to calculate derivatives. LetW andY

be vectors of Chebyshev Series coefficient of sizen. Then the following statements are

identical:

Of course thenth coefficient ofY will always be zero since thenth row (as well as

the first column) ofADT will always be populated with zeros.

AXT =

























0
1
2

0 0 … 0 0

1 0
1
2

0 … 0 0

0
1
2

0
1
2

… 0 0

0 0
1
2

0 … 0 0

. . . . . .

. . . . . .

. . . . . .

0 0 0 0 …
1
2

0

0 0 0 0 … 0
1
2

0 0 0 0 …
1
2

0

























ADT(:, i +2) = 2AXTADT(:, i +1) +2I(:, i +1) −ADT(:, i)

i ≤ i ≤ n −2

Y =
dW
dx

Y = ADTW
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Integration is a bit more complex. In general, the problem is to solve the following

equation:

First, then+1 × n indefinite integral matrixSIT should be found. The easiest way of

generatingSIT begins by adding an additional column toADT using the same recursion

formula to form then × n+1 matrix ADT1. SIT is simply the pseudo-inverse ofADT1:

The next step is to evaluate the integral atx = -1. This can be done by multplying

the following row vector bySIL:

The first row of SIT contains all zeros. If this row is replaced by-S-1 and the

resulting matrix calledSDT, we have all the pieces for calculating the integral of a

Chebyshev Series:

Of course, the vectorY may have to be truncated or padded with zeros as required.

E-4.4.3 Switching Functions

Switching functions for Chebyshev Series can not be evaluated as easily as the

switching functions for Legendre Series due to the weighting functionr(x) for the

Chebyshev Polynomials. Recall:

The situation is not hopeless due to the following integral equations:

Y = Y0+ ⌠
⌡
τ = −1

x

Wdτ

SIT = (ADT1
T ADT1)

−1
ADT1

T

X−1 = [1 −1 1 −1 … (−1)n −1]

S−1 = X−1SIT

Y = SDTW +Y0

c1 =
1
π
⌠
⌡
−1

1
f(x)

√1− x2
dx

cm =
2
π
⌠
⌡
−1

1
f(x)Tm −1(x)

√1− x2
dx
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Thus if fj is the Chebyshev Series representation of thejth piece of Chebyshev

Series waveformY andx0(j) is thex coordinate of the ending point of thejth piece, then

we can state the following:

The process should now be clear:

1. Convertfj(x) to a polynomial representationfpj(x)

⌠
⌡

dx

√1− x2
= sin−1(x)

⌠
⌡

x

√1− x2
dx = −√1− x2

⌠
⌡

x2m

√1− x2
dx =

(2m)!
(m !)2




−√1− x2 ∑

r = 1

m r !(r −1)!
22m −2r +1(2r)!

x2r −1+
sin−1(x)

22m





⌠
⌡

x2m +1

√1− x2
dx = −√1− x2 ∑

r = 1

m (2r)!(m !)2

(2m +1)!(r !)2
rm − rx2r

Y =












Y1

Y2

Y3

.

.

.
Yn












x0(0) = −1

x0(m) = 1

Y1 =
1
π
∑

j = 1

m ⌠
⌡

x0(j −1)

x0(j)
fj(x)

√1− x2
dx

Ym =
2
π
∑

j = 1

m ⌠
⌡

x0(j −1)

x0(j)
fj(x)Tm −1(x)

√1− x2
dx
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2. Multiply fpj(x) by the polynomial representation forTi(x) and call the resulting

polynomialftj(x).

3. Use the above integral equations to evaluate atx = x0(j) and x = x0(j-1) the

integral offtj(x) term by term to form thejth component ofYi calledYji.

4. Sum upYji over j to produceYi.

While the above process will produce thecorrect values for Yi, the following

method is much easier to calculate and produces nearly identical results:

1. Convertfj(x) to a Legendre Series representationflj(x)

2. Calculate the Legendre Series RepresentationYl of Y with the methods of section

E-4.3.3.

3. ConvertYl to the Chebyshev Series RepresentationY.

E-4.4.4 Waveform Smoothing

There is no obvious method for performing waveform smoothing in the Chebyshev

Series spectral domain. Instead, the waveform should be converted to a polynomial

expansion and the methods of section E-4.2.4 employed.
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Appendix F: Model Development

The following electrical power system models have been develped in support of

WAVESIM:

Three Phase Synchronous Generator

Voltage Regulator

Prime Mover

Three Phase Switch

Transmission Line

Constant Impedance Loads

Reduction Gear

Propeller

Ship Dynamics

Pulse Generator

Induction Motor
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F-1 3 Phase Synchronous Machine Model

Two models are presented for simulating a three phase synchronous model. The first

expresses the voltages and currents in terms of a rotating reference frame (dq0) rotating at

the base frequency. This model is suitable for studies where the voltages and currents are

balanced, nearly sinusoidal, and near the base frequency. For fast transients or unbalanced

operations, the actual instantaneous values for the voltages and currents should be used (abc

frame). Both models are very similar in that the terminal values are transformed to a

rotating reference frame alligned with the rotor of the machine (Park’s Transformation)

F-1.1 DQ0 Model

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type

Stator Direct VD (import) ID (export) (1) Normal
Stator Quadrature VQ (import) IQ (export) (1) Normal
Stator Zero Sequence V0 (import) I0 (export) (1) Normal

Mechanical (import) Tm (export) (0) Normal

Field Voltage VFD (import) Information

Stator D-axis Current IDI (export) Information
Stator Q-axis Current IQI (export) Information
Stator 0-axis Current I0I (export) Information
Field Current IFI (export) Information

The importximp and exportxexp vectors are defined by:

ωm

ximp =








VD

VQ

V0

VFD

ωm








xexp =














ID

IQ

I0

IF

Tm

IDI

IQI

I0I













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Parameters

xd Synchronous Reactance (PU)
xq Negative Sequence Reactance (PU)

Transient Reactance (PU)
D-axis Subtransient Reactance (PU)
Q-axis Subtransient Reactance (PU)

xal Armature Leakage Reactance (PU)

Transient Open Circuit Time Constant (seconds)
D-axis Subtransient OC Time Constant (seconds)
Q-axis Subtransient OC Time Constant (seconds)
Armature Time Constant (sec)

H Inertia Constant (sec)
pp Pole Pairs

ifnl Field Current for no load rated voltage (amps)

Base System Frequency (rad/sec)
Base System Angle (radians)

VSB Base System Voltage (volts)
PSB Base System Power (watts)

VMS Base Machine Voltage (volts)
PMB Base Machine Power (watts)

States

rotor angle wrt to synchronous frame (rad)
D-axis flux-linkage (PU)
Q-axis flux-linkage (PU)
Q-axis voltage behind subtransient reactance (PU)
D-axis voltage behind subtransient reactance (PU)
Q-axis voltage behind transient reactance (PU)

xd ′
xd ′′
xq ′′

Tdo ′
Tdo ′′
Tqo ′′
Tad

ωbs

Θbs

ΘS

ψdS

ψqS

eqS ′′
edS ′′
eqS ′
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Equations

Constant Definitions

Base Quantities

Other Constants

ISB =
2
3

PSB

VSB

TSB =
PSB

ωSB

IMB =
2
3

PMB

VMB

TMB =
ppPMB

ωbs

IfB = Ifnl(xd − xal)

VfB =
PMB

IfB

xad = xd − xal

xf =
xad

2

xd − xd ′

rf =
xf

ωbsTdo ′

xkd =
xad

2

xd − xd ′′

α =
xd − xd ′′
xd ′ − xd ′′
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Angle Calculations

Variable Rotation and Scaling

Θ =⌠⌡(ωbs −ωm pp)dt +ΘS

Θ = S (ωbs −ωm pp) + ΘS0

CΘ = cos(Θ)

SΘ = sin(Θ)

v =








vd

vq

v0

vfd








V =








VD

VQ

V0

VFD








Rv =












VSB

VMB

M(CΘ) −
VSB

VMB

M(SΘ) 0 0

VSB

VMB

M(SΘ)
VSB

VMB

M(CΘ) 0 0

0 0
VSB

VMB

0

0 0 0
VSB

VfB












v = RvV
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Solving the electrical dynamical equations

The five electrical dynamical equations must be solved simultaneously. Since the

Integration Matrix and Multiplication Matrix are linear matrices, the entire problem

becomes a linear process. Hence the system of equations can be represented by a matrix

equation.

First define the integration and multiplication matrices

Now we define the system of equations

⌠
⌡ x(t)dt = Sx + xS ; S ∈ ℜ n ×n xS ∈ ℜ

n

x ⋅ y =M(y)x ; M ∈ ℜ n ×n

A =
















I +
S

Tad

− SM(ωm pp) −
S

Tad

0 0

SM(ωm pp) I +
S

Taq

0
S

Taq

0

− S
xd ′ − xd ′′
Tdo ′′xd ′′

0 I + S
xd ′

Tdo ′′xd ′′
0 −

S
Tdo ′′

0 S
xq − xq ′′
Tqo ′′xq ′′

0 I + S
xq

Tqo ′′xq ′′
0

0 0 − S
α − 1
Tdo ′

0 I + S
α

Tdo ′
















x =








ψd

ψq

eq ′′
ed ′′
eq ′







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Bv =









ωbs 0 0 0

0 ωbs 0 0

0 0 0 0
0 0 0 0

0 0 0
xad

rf









BS =









I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I









s0 =








ψdS0

ψqS0

eqS0 ′′
edS0 ′′
eqS0 ′








b = Bvv +BSs0

x = A−1b
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Calculating Export Variables

First the currents in machine reference frame

Now the currents in system reference frame

ie =








id

iq

i0
ifd








C =












1
xd ′′

0 −
1

xd ′′
0 0

0
1

xq ′′
0

1
xq ′′

0

0 0 0 0 0

0 0 −
xkd

xad(xf − xkd)
0

xf

xad(xf − xkd)












ie =Cx

Ie =








ID

IQ

I0

IFD








RI =












IMB

ISB

M(CΘ)
IMB

ISB

M(SΘ) 0 0

−
IMB

ISB

M(SΘ)
IMB

ISB

M(CΘ) 0 0

0 0
IMB

ISB

0

0 0 0 I












Ie = RIie
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Torque Equation

Structural Jacobian

The structural jacobian for the DQ0 model is given by:

Jacobian Calculations

Calculating the jacobian of the export variables with respect to the import variables

is straight forward with the exception of the partials with respect to the mechanical

frequency. First of all, nothing depends onV0, hence all of its partials are zero. In the

following derivations, the Device Jacobian is partitioned such that the voltages and

currents are split from the mechanical speed and torque.

Tepu = ψdiq −ψqid

Tacc =
2H pp

ωbs

dωm

dt

Tepu =M(ψd)iq −M(ψq)id

Tacc =
2H pp

ωbs

S−1ωm

Tm =
TSB

TMB

(Tacc −Tepu)

JDS =










N N 0 N N
N N 0 N N
0 0 0 0 0
N N 0 N N
N N 0 N N
N N 0 N N
0 0 0 0 0










Ie = RICA−1(BvRvV +BSs0)

∂Ie

∂V
= RICA−1BvRv
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Calculating the partials with respect to the mechancial frequency:

where

and

Ax = BvRvV +BSs0

A
∂x
∂ωm

+
∂A
∂ωm

x = Bv

∂Rv

∂ωm

V

∂x
∂ωm

= A−1

Bv

∂Rv

∂ωm

V −
∂A
∂ωm

x




∂Ie

∂ωm

= RIC
∂x
∂ωm

+
∂RI

∂ωm

Cx

∂A
∂ωm

=









0 − Spp 0 0 0

S pp 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









∂Θ
∂ωm

= −S pp

∂Rv

∂ωm

=









VSB

VMB

M(SΘ)S pp

VSB

VMB

M(CΘ)S pp 0 0

−
VSB

VMB

M(CΘ)S pp

VSB

VMB

M(SΘ)S pp 0 0

0 0 0 0
0 0 0 0








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The Torque equation Jacobians are given by:

Now with respect to the mechanical frequency:

∂RI

∂ωm

=









IMB

ISB

M(SΘ)S pp −
IMB

ISB

M(CΘ)S pp 0 0

IMB

ISB

M(CΘ)S pp

IMB

ISB

M(SΘ)S pp 0 0

0 0 0 0
0 0 0 0









∂Tm

∂V
= −

TSB

TMB

∂Tepu

∂V

∂Tepu

∂V
=M(ψd)

∂iq

∂V
+M(iq)

∂ψd

∂V
−M(ψq)

∂id

∂V
−M(id)

∂ψq

∂V

∂ψd

∂V
= [I 0 0 0 0]

∂x
∂V

∂ψq

∂V
= [0 I 0 0 0]

∂x
∂V

∂id

∂V
= [I 0 0 0]

∂ie

∂V

∂iq

∂V
= [0 I 0 0]

∂ie

∂V

∂Tm

∂ωm

=
TSB

TMB




∂Tacc

∂ωm

−
∂Tepu

∂ωm





∂Tacc

∂ωm

=
2H pp

ωbs

S−1

∂Tepu

∂ωm

=M(ψd)
∂iq

∂ωm

+M(iq)
∂ψd

∂ωm

−M(ψq)
∂id

∂ωm

−M(id)
∂ψq

∂ωm
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Putting the Jacobian all together:

∂ψd

∂ωm

= [I 0 0 0 0]
∂x
∂ωm

∂ψq

∂ωm

= [0 I 0 0 0]
∂x
∂ωm

∂id

∂ωm

= [I 0 0 0]
∂ie

∂ωm

∂iq

∂ωm

= [0 I 0 0]
∂ie

∂ωm

JD =



















∂ID

∂VD

∂ID

∂VQ

0
∂ID

∂VF

∂ID

∂ωm

∂IQ

∂VD

∂IQ

∂VQ

0
∂IQ

∂VF

∂IQ

∂ωm

0 0 0 0 0
∂Tm

∂VD

∂Tm

∂VQ

0
∂Tm

∂VF

∂Tm

∂ωm

∂ID

∂VD

∂ID

∂VQ

0
∂ID

∂VF

∂ID

∂ωm

∂IQ

∂VD

∂IQ

∂VQ

0
∂IQ

∂VF

∂IQ

∂ωm

0 0 0 0 0


















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F-1.2 ABC Model

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type

Stator Phase A VA (import) IA (export) (1) Normal
Stator Phase B VB (import) IB (export) (1) Normal
Stator Phase C VC (import) IC (export) (1) Normal

Mechanical (import) Tm (export) (0) Normal

Field Voltage VFD (import) Information

Stator Phase A Current IAI (export) Information
Stator Phase B Current IBI (export) Information
Stator Phase C Current ICI (export) Information
Field Current IF (export) Information

The importximp and exportxexp vectors are defined by:

Parameters

All Parameters are identical to the DQ0 Model

States

All States are identical to the DQ0 Model

Equations

Constant Definitions

All Constants definitions are identical to the DQ0 Model

ωm

ximp =








VA

VB

VC

VFD

ωm








xexp =














ID

IQ

I0

IF

Tm

IDI

IQI

I0I













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Angle Calculations

For this model, the angle is the actual rotor angle of the synchronous machine:

Note: When calculating it would be wise to limit its range to±π.

Variable Rotation and Scaling

To convert from theV vector to thev vector, Parks transformation should be used:

Solving the electrical dynamical equations

The electrical dynamical equations are solved in exactly the same way as for the

DQ0 model.

Θ =⌠⌡ ωm ppdt +ΘS0

Θ = Sωm pp +ΘS0

ΘS1

V =








VA

VB

VC

VFD








Rv =
2VSB

3VMB













M(cos(Θ)) M



cos



Θ −

2π
3







M



cos



Θ +

2π
3







0

−M(sin(Θ)) −M



sin



Θ −

2π
3







−M



sin



Θ +

2π
3







0

1
2

1
2

1
2

0

0 0 0
3VMB

2VfB













v = RvV

- 281 -



Calculating Explicit Variables

The only difference for calculating the explicit variables are the following

matrices:

Structural Jacobian

The structural jacobian for the ABC model is given by:

Jacobian Calculations

The only differences for calculating the jacobian matrices are the following:

Ie =








IA

IB

IC

IFD








RI =
IMB

ISB










M(cos(Θ)) −M(sin(Θ)) 1 0

M



cos



Θ −

2π
3







−M



sin



Θ −

2π
3







1 0

M



cos



Θ +

2π
3







−M



sin



Θ +

2π
3







1 0

0 0 0
ISB

IMB










JDS =










N N N N N
N N N N N
N N N N N
N N N N N
N N N N N
N N N N N
N N N N N










∂Θ
∂ωm

= S pp
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Putting the Jacobian all together:

∂Rv

∂ωm

=
2VSB

3VMB










−M(sin(Θ))S pp −M



sin



Θ −

2π
3






S pp −M




sin



Θ +

2π
3






S pp 0

−M(cos(Θ))S pp −M



cos



Θ −

2π
3






S pp −M




cos



Θ +

2π
3






S pp 0

0 0 0 0
0 0 0 0










∂RI

∂ωm

=
IMB

ISB










−M(sin(Θ))S pp −M(cos(Θ))S pp 0 0

−M



sin



Θ −

2π
3






S pp −M




cos



Θ −

2π
3






S pp 0 0

−M



sin



Θ +

2π
3






S pp −M




cos



Θ +

2π
3






S pp 0 0

0 0 0 0










JD =






















∂IA

∂VA

∂IA

∂VB

∂IA

∂VC

∂IA

∂VF

∂IA

∂ωm

∂IB

∂VA

∂IB

∂VB

∂IB

∂VC

∂IB

∂VF

∂IB

∂ωm

∂IC

∂VA

∂IC

∂VB

∂IC

∂VC

∂IC

∂VF

∂IC

∂ωm

∂Tm

∂VA

∂Tm

∂VB

∂Tm

∂VC

∂Tm

∂VF

∂Tm

∂ωm

∂IA

∂VA

∂IA

∂VB

∂IA

∂VC

∂IA

∂VF

∂IA

∂ωm

∂IB

∂VA

∂IB

∂VB

∂IB

∂VC

∂IB

∂VF

∂IB

∂ωm

∂IC

∂VA

∂IC

∂VB

∂IC

∂VC

∂IC

∂VF

∂IC

∂ωm





















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F-2 Voltage Regulator Model

This is a simple voltage regulator model. The voltage regulator is assumed to be of a

PI type controller. This design does not have any clipping on the output waveform to

ensure the field voltage is kept within a reasonable range. This model is intended for single

generator operation since it has no provision for reactive power sharing with paralleled

generators.

F-2.1 DQ0 Model

Interface Variables

Terminal Potential Variable Flow Variables Type

Line Direct Voltage VD (import) Information
Line Quadrature Voltage VQ (import) Information
Reference Voltage Vref (import) Information
Field Voltage VFD (export) Information

The importximp and exportxexp vectors are defined by:

Parameters

kI Integrating factor (1 / sec)

kP Proportional factor (PU)

kDQ0 Voltage Magnitude Conversion factor (PU)

States

VfdS Field Voltage

Equations

Calculate the terminal voltage:

Calculate the error voltage:

ximp =




VD

VQ

Vref





xexp = [VFD]

Vt = kDQ0√ VD ⋅ VD +VQ ⋅ VQ

Verr = Vref −Vt

- 284 -



Calculate the Field Voltage:

Structural Jacobian

The structural jacobian for the DQO model is given by:

Jacobian

Note the partials of Vt with respect to VD and VQ must be determined from the square root

function:

The device jacobian is given by:

VFD = ⌠⌡ kIVerrdt + kpVerr +VfdS

JDS = [N N L ]

∂VFD

∂Vref

= kIS + kpI

∂VFD

∂Vt

= −kIS − kpI

∂VFD

∂VD

=
∂VFD

∂Vt

∂Vt

∂VD

∂VFD

∂VQ

=
∂VFD

∂Vt

∂Vt

∂VQ

∂Vt

∂VD

= kDQ0

VD

Vt

∂Vt

∂VQ

= kDQ0

VQ

Vt

JD =




∂VFD

∂VD

∂VFD

∂VQ

∂VFD

∂Vref




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F-2.2 ABC Model

Interface Variables

Terminal Potential Variable Flow Variables Type

Phase A Voltage VA (import) Information

Phase B Voltage VB (import) Information

Phase C Voltage VC (import) Information

Reference Voltage Vref (import) Information

Field Voltage VFD (export) Information

The importximp and exportxexp vectors are given by:

Parameters

kI Integrating factor (1 / sec)

kP Proportional factor (PU)

kABC Voltage Magnitude conversion factor (PU)

States

VfdS Field Voltage

Equations

Calculate and subtract out the DC offset of the common potential:

ximp =








VA

VB

VC

Vref








xexp = [VFD]

V0 =
VA +VB +VC

3

VA0 = VA −V0

VB0 = VB −V0

VC0 = VC −V0
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Calculate the Terminal voltage1:

Calculate the Error voltage:

Calculate the Field Voltage:

Note 1: Derivation of Terminal Voltage:

Assume phase voltages are balanced three phase:

Structural Jacobian

The structural jacobian for the ABC model is given by:

Vt = kABC√2
3
(VA0 ⋅ VA0 +VB0 ⋅ VB0 +VC0 ⋅ VC0)

Verr = Vref −Vt

VFD = ⌠⌡ kIVerrdt + kpVerr +VfdS

VA0 = VT cos(Θ)

VB0 = VT cos



Θ +

2π
3




VC0 = VT cos



Θ −

2π
3




VA0
2 +VB0

2 +VC0
2 =

VT
2

2
(1+ cos(2Θ) +

1+ cos(2Θ)cos




4π
3



− sin(2Θ)sin





4π
3



+

1+ cos(2Θ)cos




4π
3



+ sin(2Θ)sin





4π
3



)

VA0
2 +VB0

2 +VC0
2 =

3
2

VT
2

JDS = [N N N L ]
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Jacobian

Note the partials ofVt with respect toVA, VB, andVC must be determined from the square

root function:

∂VFD

∂Vref

= kIS + kpI

∂VFD

∂Vt

= −kIS − kpI

∂VFD

∂VA

=
∂VFD

∂Vt

∂Vt

∂VA

∂VFD

∂VB

=
∂VFD

∂Vt

∂Vt

∂VB

∂VFD

∂VC

=
∂VFD

∂Vt

∂Vt

∂VC

∂Vt

∂VA0

= kABC

VA0

Vt √ 2
3

∂Vt

∂VB0

= kABC

VB0

Vt √ 2
3

∂Vt

∂VC0

= kABC

VC0

Vt √ 2
3

∂Vt

∂VA

=
2
3

∂Vt

∂VA0

−
1
3

∂Vt

∂VB0

−
1
3

∂Vt

∂VC0

∂Vt

∂VB

= −
1
3

∂Vt

∂VA0

+
2
3

∂Vt

∂VB0

−
1
3

∂Vt

∂VC0

∂Vt

∂VC

= −
1
3

∂Vt

∂VA0

−
1
3

∂Vt

∂VB0

+
2
3

∂Vt

∂VC0
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The device jacobian is given by:

JD =




∂VFD

∂VA

∂VFD

∂VB

∂VFD

∂VC

∂VFD

∂Vref




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F-3 Prime Mover

This is a rather crude model of a PI controller on a prime mover. The dynamics of the

controller are assumed to dominate the response of the prime mover.

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type

Mechanical (import) Tm (export) (0) Normal

Information (import) Information

The importximp and exportxexp vectors are defined by:

Parameters

kI Integrating Torque factor (1 / sec)
kP Proportional Torque factor (PU)

base frequency (rad/sec)
PSB base System Power (watts)
PMB base Machine Power (watts)

States

TmS mechanical torque

Equations

Structural Jacobian

The structural jacobian for the Prime Mover model is given by:

ωm

ωref

ximp =




ωm

ωref





xexp = [Tm]

ωbs

Tm =
PMB

PSB




⌠
⌡

kI

ωbs

(ωref −ωm)dt +
kP

ωbs

(ωref −ωm)



+TmS

JDS = [L L ]
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Jacobian

F-4 Three Phase Switch

F-4.1 DQO Model

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type

TD1 VD1 (Import) ID1 (Export) (1) Normal

TQ1 VQ1 (Import) IQ1 (Export) (2) Normal

T01 V01 (Import) I01 (Export) (3) Normal

TD2 VD2 (Import) ID2 (Export) (1) Normal

TQ2 VQ2 (Import) IQ2 (Export) (2) Normal

T02 V02 (Import) I02 (Export) (3) Normal

SW SW (Import) Information

All Interface variables are on a Per Unit (PU) Basis

The importximp and exportxexp vectors are given by:

∂Tm

∂ωref

=
PMB

PSB

k
ωbs

S

∂Tm

∂ωm

= −
∂Tm

∂ωref

JD =




∂Tm

∂ωm

∂Tm

∂ωm





ximp =











VD1

VQ1

V01

VD2

VQ2

V02











xexp =











ID1

IQ1

I01

ID2

IQ2

I02










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Parameters

Gon On Conductance (PU)

Goff Off Conductance (PU)

States

There are no states for this model.

Equations

The equations for the switch are very simple. First, we define the conductanceG of

the waveform:

If

Then

Else

Now Generate the Conductance MatrixGD:

The export variables are simply:

Structural Jacobian

The structural jacobian is given by:

SW > 0

G =Gon

G =Goff

GD =










M(G) 0 0 M(−G) 0 0 0
0 M(G) 0 0 M(−G) 0 0
0 0 M(G) 0 0 M(−G) 0

M(−G) 0 0 M(G) 0 0 0
0 M(−G) 0 0 M(G) 0 0
0 0 M(−G) 0 0 M(G) 0










xexp =GDximp
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Jacobian Calculations

The jacobian matrix is very similar toGD:

Where is determined by theIf-Then-Else function.

JDS =










N 0 0 N 0 0 N
0 N 0 0 N 0 N
0 0 N 0 0 N N
N 0 0 N 0 0 N
0 N 0 0 N 0 N
0 0 N 0 0 N N










JD =



















M(G) 0 0 M(−G) 0 0 M(VD1 −VD2)
∂G
∂SW

0 M(G) 0 0 M(−G) 0 M(VQ1 −VQ2)
∂G
∂SW

0 0 M(G) 0 0 M(−G) M(V01−V02)
∂G
∂SW

M(−G) 0 0 M(G) 0 0 M(VD2 −VD1)
∂G
∂SW

0 M(−G) 0 0 M(G) 0 M(VQ2 −VQ1)
∂G
∂SW

0 0 M(−G) 0 0 M(G) M(V02−V01)
∂G
∂SW



















∂G
∂SW
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F-4.2 ABC Model

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type

TA1 VA1 (Import) IA1 (Export) (1) Normal

TB1 VB1 (Import) IB1 (Export) (2) Normal

TC1 VC1 (Import) IC1 (Export) (3) Normal

TA2 VA2 (Import) IA2 (Export) (1) Normal

TB2 VB2 (Import) IB2 (Export) (2) Normal

TC2 VC2 (Import) IC2 (Export) (3) Normal

SW SW (Import) Information

The importximp and exportxexp vectors are given by:

Parameters

Gon On Conductance (PU)

Goff Off Conductance (PU)

States

There are no states for this model.

Equations

ximp =











VA1

VB1

VC1

VA2

VB2

VC2











xexp =











IA1

IB1

IC1

IA2

IB2

IC2










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The equations for the switch are very simple. First, we define the conductanceG of

the waveform:

If

Then

Else

Now Generate the Conductance MatrixGD:

The export variables are simply:

Structural Jacobian

SW > 0

G =Gon

G =Goff

GD =










M(G) 0 0 M(−G) 0 0 0
0 M(G) 0 0 M(−G) 0 0
0 0 M(G) 0 0 M(−G) 0

M(−G) 0 0 M(G) 0 0 0
0 M(−G) 0 0 M(G) 0 0
0 0 M(−G) 0 0 M(G) 0










xexp =GDximp

JDS =










N 0 0 N 0 0 N
0 N 0 0 N 0 N
0 0 N 0 0 N N
N 0 0 N 0 0 N
0 N 0 0 N 0 N
0 0 N 0 0 N N









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Jacobian Calculations

The jacobian matrix is very similar toGD:

Where is determined by theIf-Then-Else function.

JD =



















M(G) 0 0 M(−G) 0 0 M(VA1 −VA2)
∂G
∂SW

0 M(G) 0 0 M(−G) 0 M(VB1 −VB2)
∂G
∂SW

0 0 M(G) 0 0 M(−G) M(VC1 −VC2)
∂G
∂SW

M(−G) 0 0 M(G) 0 0 M(VA2 −VA1)
∂G
∂SW

0 M(−G) 0 0 M(G) 0 M(VB2 −VB1)
∂G
∂SW

0 0 M(−G) 0 0 M(G) M(VC2 −VC1)
∂G
∂SW



















∂G
∂SW
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F-5 Transmission Line

DQ0 Model

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type

TD1 VD1 (Import) ID1 (Export) (1) Normal
TQ1 VQ1 (Import) IQ1 (Export) (2) Normal
T01 V01 (Import) I01 (Export) (3) Normal
TD2 VD2 (Import) ID2 (Export) (1) Normal
TQ2 VQ2 (Import) IQ2 (Export) (2) Normal
T02 V02 (Import) I02 (Export) (3) Normal

The importximp and exportxexp vectors are given by:

Parameters

R Resistance (ohms)
X Reactance (ohms)

States

(There are no states for this model)

Equations

Constant Definitions

ximp =











VD1

VQ1

V01

VD2

VQ2

V02











xexp =











ID1

IQ1

I01

ID2

IQ2

I02











G =
R

X2+R2
I

Y = −
X

X2+R2
I
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Calculate the Export Variables

Structural Jacobian

The Structural Jacobian is given by:

Jacobian Calculations

The matrixJD is the Jacobian matrix.

JD =













G −Y 0 −G Y 0
Y G 0 −Y −G 0

0 0
I
r

0 0 −
I
r

−G Y 0 G −Y 0
−Y −G 0 Y G 0

0 0 −
I
r

0 0
I
r













xexp = JDximp

JDS =










D D 0 D D 0
D D 0 D D 0
0 0 D 0 0 D
D D 0 D D 0
D D 0 D D 0
0 0 D 0 0 D









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ABC Model

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type

TA1 VA1 (Import) IA1 (Export) (1) Normal
TB1 VB1 (Import) IB1 (Export) (2) Normal
TC1 VC1 (Import) IC1 (Export) (3) Normal
TA2 VA2 (Import) IA2 (Export) (1) Normal
TB2 VB2 (Import) IB2 (Export) (2) Normal
TC2 VC2 (Import) IC2 (Export) (3) Normal

The importximp and exportxexp vectors are given by:

Parameters

R Series Resistance (ohms)
G Parallel Conductance (mhos)
L Inductance (henries)

States

IAL Phase A Inductor Current
IBL Phase B Inductor Current
ICL Phase C Inductor Current

Equations

Each of the three phases can be treated independently of one another. In the

equations which follow replace a subscriptedX with the appropriate phase letter:

First write the equations describing the phase:

ximp =











VA1

VB1

VC1

VA2

VB2

VC2











xexp =











IA1

IB1

IC1

IA2

IB2

IC2
















R I

I −
S
L
−G










IX1

VXN




+





−I 0 0

0 G +
S
L

− I










VX1

VX2

IXL0





= 0
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Manipulating the first matrix equation, we can get an expression for the terminal 1

current:

Once this is known, the other variables are easy to calculate:

Structural Jacobian

The Structural Jacobian is given by:





IX2

IXL




=





−I 0

0 −
I
R
−G










IX1

VXN




+





0 0 0
I
R

G 0










VX1

VX2

IXL0





Giv =




R
L

S +RG + I




−1







S
L
+G





−




S
L
+G





I 


IX1 =Giv





VX1

VX2

IXL0





VXN = VX1 −RIX1

IXL = −




I
R
+G




VXN +

VX1

R
+GVX2

IX2 = −IX1

JDS =










L 0 0 L 0 0
0 L 0 0 L 0
0 0 L 0 0 L
L 0 0 L 0 0
0 L 0 0 L 0
0 0 L 0 0 L









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Jacobian Calculations

The Jacobian Matrix can be directly constructed from the first element ofGiv:

G11=




R
L

S +RG + I




−1 



S
L
+G





JD =











G11 0 0 −G11 0 0

0 G11 0 0 −G11 0

0 0 G11 0 0 −G11

−G11 0 0 G11 0 0

0 −G11 0 0 G11 0

0 0 −G11 0 0 G11










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F-6 Constant Impedance Loads

DQ0 Model

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type

TD VD (import) ID (export) (0) Normal
TQ VQ (import) IQ (export) (0) Normal
T0 V0 (import) I0 (export) (0) Normal

The importximp and exportxexp vectors are given by:

Parameters

R Load resistance (ohms)
X Load reactance (ohms)
Ggnd Zero Sequence conductance to ground.

States

(There are no states for this model)

Equations

First calculate the admitance

Now calculate the Admitance Matrix:

ximp =




VD

VQ

V0





xexp =




ID

IQ

I0





G =
R

R2+X2

Y = −
X

R2+X2

Gvi =





G −Y 0
Y G 0
0 0 Ggnd






xexp =Gviximp
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Structural Jacobian

The Structural Jacobian is given by:

Jacobian Calculations

The jacobian matrix is theGvi matrix.

JDS =





D D 0
D D 0
0 0 D





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ABC Model

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type

TA VA (import) IA (export) (0) Normal
TB VB (import) IB (export) (0) Normal
TC VC (import) IC (export) (0) Normal

The importximp and exportxexp vectors are given by:

Parameters

R Series Resistance (ohms)
G Parallel Conductance (mhos)
L Inductance (henries)
RGND Resistance of center to Ground (ohms)

States

IAL Phase A Inductor Current
IBL Phase B Inductor Current
ICL Phase C Inductor Current

Equations

This load model can be considered to be a transmission line where all the terminals of one

side are connected together to a resistor going to ground. As such, we can use some of

the derivations from the transmission line model:

ximp =




VA

VB

VC





xexp =




IA

IB

IC





G31=




R
L

S +RG + I




−1

G11=G31





S
L
+G





IX =G11VX −G11VX2 +G13IXL0

VX2 = (IA + IB + IC)RGND
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This can be rewritten by defining the following matrix:

Which allows the following equation to be written:

Or if we rewrite the equation:

The inductor current for phaseX can be determined from:

Structural Jacobian

The structural jacobian is given by:

GABC =




(I +RGNDG11) RGNDG11 RGNDG11

RGNDG11 (I +RGNDG11) RGNDG11

RGNDG11 RGNDG11 (I +RGNDG11)





GABC





IA

IB

IC





=




G11 0 0

0 G11 0

0 0 G11









VA

VB

VC





+




G31 0 0

0 G31 0

0 0 G31









IAL0

IBL0

ICL0









IA

IB

IC





=GABC
−1





G11 0 0

0 G11 0

0 0 G11









VA

VB

VC





+GABC
−1





G31 0 0

0 G31 0

0 0 G31









IAL0

IBL0

ICL0





VXN = VX −RIX

IXL = −




I
R
+G




VXN +

VX

R
+GRGND(IA + IB + IC)

JDS =





L L L
L L L
L L L





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Jacobian Calculations

The Jacobian Matrix is given by:

JD =GABC
−1





G11 0 0

0 G11 0

0 0 G11




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F-7 Reduction Gear

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type

S1 (export) T1 (export) (0) Normal

S2 (import) T2 (import) (0) Normal

The potential variables are measured in radians/second while the flow variables are

measured in Newton-meters.

The importximp and exportxexp vectors are given by:

Parameters

n1 Number ofteeth on shaft 1.

n2 Number ofteeth on shaft 2.

Efficiency of Reduction Gears.

States

There are no states for this model.

Equations

The rotational speed of the shafts are proportional to the gear ratio:

ω1

ω2

ximp =




ω2

T2





xexp =




ω1

T1





η

ω1 =
n2

n1

ω2

- 307 -



The transmitted torque however, must be scaled by the efficiency. Which side of the

equation the efficiency applies depends on the direction of the power flow:

if

then

else

The first zero crossing of the power should be passed back to the system as a

suggested recalculation time.

Structural Jacobian

The structural jacobian is given by:

Jacobian Calculations

The jacobian is given by:

The partials ofT1 depend on the partial derivatives of theif-then-else function. If

the direction of the power flow remains constant over the interval, then the partials are

given by:

T2ω2 > 0

T1 = −
n1

n2

ηT2

T1 = −
n1

n2η
T2

JDS =



D 0
N N





JD =








n2

n1

0

∂T1

∂ω2

∂T1

∂T2








∂T1

∂ω2

= 0

∂T1

∂T2

=
T1

T2
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F-8 Propeller

The relationship between the torque, angular speed, forward velocity and forces on a

propeller are highly complex and nonlinear. While much information is known about the

steady-state operation of propellers traversing in the forward direction, little information is

available for nonstandard operating conditions. The classical approach is to generateKt vs J

andKq vs J curves where:

where the variables are described in the following sections.

The classical approach works well whenVp (speed of propeller with respect to the

fluid) and n (RPM of shaft) are both positive andn is large enough to bringJ (advance

coefficient) below about 1.5. Outside of this range, little data is provided for most

propellers. The classical approach breaks down completely when the shaft speed is zero

andJ is infinite. Furthermore, there is no way to differentiate between backing down (n

andVp both negative) and having forward way on (n andVp both positive). The method

used for this model is better suited for simulation studies because it essentially uses the

angle of attack on the propeller blade as the argument for the thrust and torque coefficients.

This model is based on work conducted at the Naval Ship Research and Development

Center, Annapolis, MD by D. W. Baker and C. L. Patterson and reflects data and theory

developed by I. Ya. Miniovich.

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type

Mechanical (import) Tm (export) (0) Normal

Hydrodynamic u (import) F (export) (0) Normal

Note: units areradians/second, Newton-meters, meters/second, andNewtons

The ImportXimp and ExportXexp vectors are defined by:

J =
Vp

nD

F =KT(J)ρD4n2

Tm =KQ(J)ρD5n2

ωm
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Parameters

D Diameter of Prop (meters)
w Wake Fraction (PU)

ρ Density of water (kg/m3)

CT() Thrust Coefficient matrix (unlimited rows by 2 columns)
first column is inradians [-π π]
second column is Thrust Coefficient in PU.

CQ() Torque Coefficient matrix (unlimitd rows by 2 columns)
first column is inradians [-π π]
second column is Torque Coefficient in PU.

States

(There are no states for this model)

Equations

Normally, CT() and CQ() are specified as data points. Hence some type of

interpolations scheme is needed to determine the value of theses functions at intermediate

points, as well as the value of the first derivative.

Device Structural Jacobian

The Device Structural Jacobian for all waveforms is given by:

Ximp =




ωm

u




Xexp =




Tm

F




Θ

Θ

Vp = (1−w)u

n =
ωm

2π

Θ =atan2(nD ,Vp)

F = −CT(Θ)ρD2(Vp
2+ n2D2)

Tm =CQ(Θ)ρD3(Vp
2+ n2D2)
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Jacobian Calculations

Calculate partials with respect to intermediate variables

Calculate the partials

Calculate the partial of with respect toVp andn.

JDS =



N N
N N





∂F
∂u

= (1−w)
∂F
∂Vp

∂Tm

∂u
= (1−w)

∂F
∂Vp

∂F
∂ωm

=
1
2π
∂F
∂n

∂Tm

∂ωm

=
1
2π
∂Tm

∂n

∂F
∂Vp

= −ρD2

2CT(Θ)Vp + (Vp

2+ n2D2)
∂CT(Θ)
∂Vp





∂F
∂n

= −ρD2

2CT(Θ)D

2n + (Vp
2+ n2D2)

∂CT(Θ)
∂n





∂Tm

∂Vp

= ρD3

2CQ(Θ)Vp + (Vp

2+ n2D2)
∂CQ(Θ)
∂Vp





∂Tm

∂n
= ρD3


2CQ(Θ)D

2n + (Vp
2+ n2D2)

∂CQ(Θ)
∂n





Θ

∂Θ
∂Vp

=
1

nD

1+ 
Vp

nD




2
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Of course, the partials ofCT( ) and CQ( ) with respect to must be determined

from the interpolation scheme used.

Putting all of this together:

∂Θ
∂n

=
−

Vp

n2D

1+ 
Vp

nD




2

Θ Θ Θ

JD =








∂Tm

∂ωm

∂Tm

∂u
∂F
∂ωm

∂F
∂u







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F-9 Ship Dynamics Model

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type

Ship Hydrodynamics u (import) F (export) (0) Normal

Velocity u is measured in meters/second while forceF is measured in Newtons.

The importximp and exportxexp vectors are given by:

Parameters

ρ Density of Salt Water (kg/m3) 1025.9 kg/m3 @ 15˚ C.

ν Kinematic Viscosity of Water (m2/sec) 1.19×10-6 m2/sec @15˚ C.

G Acceleration of Gravity (m/sec2) 9.80665 m/sec2

L Length of Ship (m)

AS Surface Area of Ship (m2)

m Mass of Ship (kg)

madd Added Mass Multiplier (PU) (normally between 1.0 and 1.10)

Ca Correlation Allowance

Cf(Re) Matrix of Frictional Drag Coefficients (2×n) or (3×n)

column 1 are Reynolds Number Values

column 2 are Frictional Drag Coefficient Values

column 3 are optional first derivative values of the curve

Note: Values should be provided for negative Reynolds Numbers

Cr(Fr) Matrix of Residual Drag Coefficients (2×n) or (3×n)

column 1 are Froude Number Values

column 2 are Residual Drag Coefficient Values

column 3 are optional first derivative values of the curve

Note: Values should be provided for negative Froude Numbers

States

There are no states associated with this device

ximp = [u ] xexp = [F ]
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Equations

The basic equations are given by:

The only potential difficulty is performing the evaluation of the drag coefficients

Cf(Re) andCr(Fr).

Structural Jacobian

The structural jacobian is given by:

Jacobian Calculations

where S is the integration matrix and ( ) must be determined by either

differentiating theCf(Re) (Cr(Fr)) curve or by interpolating the third colum if so provided.

Re =
uL
ν

Fr =
u

√GL

CT =Cf(Re) +Cr(Fr) +Ca

F =
ρ
2

u2ASCT +maddm
du
dt

JDS = [N ]

JD =
ρ
2

As




M(u )M(u )





L
ν

M




dCf(Re)
dRe




+

1

√LG
M




dCr(Fr)
dFr







+2M(u )M(Ct(Re))




+

maddmS−1

dCf(Re)

dRe

dCr(Fr)

dFr
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F-10  Pulse Generator

Interface Variables

Terminal Potential Variable Flow Variables Type

V0 V (export) Information

The importximp and exportxexp vectors are given by:

Parameters

Voff Value ofV when off
Von Value ofV when on

tP Matrix of pulse times (2×nt):

column 1 are pulse on times.

column 2 are pulse off times.

unlimited number ofnt rows.

States

None

Equations

If the timet falls between an on and an off time thenV = Von, otherwiseV = Voff.

If a discontinuity falls within the time interval, the earliest discontinuity time should

be passed back as a recommended recalculation time. The time of the next discontiuity

after the time interval should also be made available to the system solver.

Structural Jacobian

There is no structural jacobian matrix for this device.

Jacobian Calculations

There is no jacobian matrix for this device.

ximp = [] xexp = [V ]
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F-11 Induction Motor

F-11.1 ABC Model

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type

Phase A VA (Import) IA (Export) (1) Normal

Phase B VB (Import) IB (Export) (1) Normal

Phase C VC (Import) IC (Export) (1) Normal

Neutral V0 (Import) I0 (Export) (1) Normal

Mechanical (Import) Tm (Export) (0) Normal

Voltages are in volts, currents in amps, angle speed in radians per second and

Torque in Newton-meters.

The importximp and exportxexp vectors are given by:

Parameters

RS Stator Resistance (ohms)

RR Rotor Resistance (reflected to Stator) (ohms)

XLS Stator Reactance (ohms)

XLR Rotor Reactance (reflected to Stator) (ohms)

XM Mutual Reactance (ohms)

J Moment of Inertia (Kg-m2)

Base Frequency (radians per second)

pp Pole Pairs

B Windage Torque Factor (Newton-Meters-second)

ωm

ximp =








VA

VB

VC

V0

ωm








xexp =








IA

IB

IC

I0

Tm








ωbs
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States

θ Electrical Rotor Angle (radians)

Equations

First calculate the electrical angle:

Now specify the following stator voltage and current vectors:

The Rotor voltages and currents as reflected on the stator are:

Calculate the inductances:

The Stator induction matrix is given by:

The Rotor induction matrix is given by:

θ = θ0+⌠⌡ ppωmdt

vS =




VA −V0

VB −V0

VC −V0





iS =




IA

IB

IC





vR′ =




VAR′
VBR′
VCR′





iR′ =




IAR′
IBR′
ICR′





Lls =
XLS

ωbs

I Llr ′ =
XLR

ωbs

I

M =
XM

ωbs

I Lms =
2
3

M

LS =










(Lls +Lms) −
1
2

Lms −
1
2

Lms

−
1
2

Lms (Lls +Lms) −
1
2

Lms

−
1
2

Lms −
1
2

Lms (Lls +Lms)









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The Mutual induction matrix is given by:

The Rotor and Stator resistance matrices are given by:

The system of equations which need to be solved can be expressed as:

For a squirrel cage induction motor . Hence the rotor curents can be solved

for:

Now the stator currents can be solved for:

LR′ =










(Llr ′ + Lms) −
1
2

Lms −
1
2

Lms

−
1
2

Lms (Llr ′ + Lms) −
1
2

Lms

−
1
2

Lms −
1
2

Lms (Llr ′ + Lms)










LSR′ =










M(cos(θ))Lms M



cos



θ +

2π
3






Lms M




cos



θ −

2π
3






Lms

M



cos



θ −

2π
3






Lms M(cos(θ))Lms M




cos



θ +

2π
3






Lms

M



cos



θ +

2π
3






Lms M




cos



θ −

2π
3






Lms M(cos(θ))Lms










Rr′ = RR






I 0 0
0 I 0
0 0 I






Rs = RS






I 0 0
0 I 0
0 0 I










vS

vR′



=




Rs + S−1LS S−1LSR′

S−1(LSR′)
T Rr′ + S−1LR′









iS

iR′




vR′ = 0

iR′ = ARSiS

ARS = −(Rr′ + S−1LR′)
−1

S−1(LSR′)
T

ARS = −(SRr′ + LR′)
−1 (LSR′)

T
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The neutral current is solved using KCL;

The electrical torque is given by:

The full torque equation is given by:

Structural Jacobian

ASS = (Rs + S−1LS + S−1LSR′ARS)
−1

iS = ASSvS

I0 = −IA − IB − IC

Te = −
2XM pp

3ωbs








M(IA)M




IAR′ −

IBR′
2
−

ICR′
2




+

M(IB)M



IBR′ −

ICR′
2
−

IAR′
2




+

M(IC)M



ICR′ −

IAR′
2
−

IBR′
2








sin(θ) +

√ 3
2
(M(IA)M(IBR′ − ICR′) +M(IB)M(ICR′ − IAR′) +M(IC)M(IAR′ − IBR′)) cos(θ)





Tm = −Te + (JS−1+BI)ωm

JDS =









N N N N N
N N N N N
N N N N N
N N N N N
N N N N N








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Jacobian Calculations

The jacobian elements corresponding to the electrical variables are easy to

calculate. If we partition the jacobian matrix as follows:

where

The remaining matrices (JEW, JTE, andJTW) are not as easy to calculate:

Take the partial wrt :

JD =






ASS ASSU1 JEW

U1
TASS U1

TASSU1 U1
TJEW

JTE JTEU1 JTW







U1 =





−1
−1
−1






vS = ASS
−1iS

ωm

0 =
∂(ASS

−1)
∂ωm

iS +ASS
−1 ∂iS

∂ωm

∂iS

∂ωm

= JEW = −ASSS−1∂(LSR′ARS)
∂ωm

iS

LSR′ARS = −LSR′(SRr′ + LR′)
−1 (LSR′)

T

∂(LSR′ARS)
∂ωm

= −LSR′(SRr′ + LR′)
−1∂(LSR′)T

∂ωm

−
∂LSR′
∂ωm

(SRr′ + LR′)
−1 (LSR′)

T

∂LSR′
∂ωm

= −










M(sin(θ))LmsS pp M



sin



θ +

2π
3






LmsS pp M




sin



θ −

2π
3






LmsS pp

M



sin



θ −

2π
3






LmsS pp M(sin(θ))LmsS pp M




sin



θ +

2π
3






LmsS pp

M



sin



θ +

2π
3






LmsS pp M




sin



θ −

2π
3






LmsS pp M(sin(θ))LmsS pp









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Appendix G: WAVESIM Program Files

WAVESIM consists of ten program source code (.c) files plus three header (.h) files

and must be linked to the standard math library. Six of the program source code files and

two of the header files are specific to WAVESIM while the remaining files contain

application independent code.

WAVESIM SPECIFIC FILES

wavesim.c Main Executive Routine

wavesim.h Definition of WAVESIM Structures

waveinit.c Initialization of Structures
Readdevice.def

waveinit.h Define Initial values of all system parameters

waveread.c Read and interpret Input File

wavebld.c Build System

wavewrit.c Write MATLAB .M file

wavewrta.c Write MATLAB .M file (continued)

APPLICATION INDEPENDENT FILES

ioliba.c String Manipulation Routines

iolbia.h declarations ofioliba.c routines

get_file.c Prompt for and open files

getline.c Obtain string from an input stream

filebase.c File name manipulation routines
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G-1 Main Program File: wavesim.c

wavesim.c contains themain routine which performs the executive functions for

WAVESIM:

1. Initialize device definitions init_devices

2. Print the Header

3. Open Files

4. Read Input File read_file

5. Build the System build_system

6. Write The Output File write_file

7. Close the Files
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G-2 System Initialization: waveinit.c

waveinit.c contains the following routines for initializing the system:

init_devices Sets Default Values
Callsread_device_def to read in
device.def file.
Debug handler.

read_device_def Reads indevice.def file

print_system_base Prints system base parameters

print_device_def Prints a Device Definition

print_matrix Prints a Matrix

print_structural_jacobian Prints a Structural Jacobian

read_terminal Interprets TERMINAL subordinate
command

read_parameter Interprets PARAMETER subordinate
command

read_state Interprets STATE subordinate
command

read_function Interprets FUNCTION subordinate
command

read_structural_jacobian Interprets STRUCTURAL
JACOBIAN subordinate command

strip_white Strips all blanks, tabs, returns from a
string.

read_matrix Reads a matrix.
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The hierarchy for the routines inwaveinit.c is given by:

init_devices

read_device_def

read_terminal

read_parameter

read_matrix

read_state

read_function

read_structural_jacobian

strip_white

print_system_base

print_device_def

print_matrix

print_structural_jacobian
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G-3 Reading Input File: waveread.c

waveread.c contains the following routines for reading in an input file:

read_file Controls other routines for reading
input files
Debug handler.

read_file_device Reads and Interprets device
command from input file.

read_file_default Reads and Interpretsdefault
command from input file.

read_file_node Reads and Interpretsnode command
from input file.

read_file_time Reads and Interpretstime command
from input file.

read_file_debug Reads and Interprets debug
command from input file.

print_debug Print debug flag status.

print_time Print simulation time parameters.

print_device Print device characteristics.

print_system Print system characteristics.

print_node Print node characteristics.

finish_reading_file Generate cross references and
generally finish the process of
developing the initial system.
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The hierarchy for the routines inwaveread.c is given by:

read_file

read_file_device

print_device

print_matrix

read_matrix

read_file_default

print_system_base

read_file_node

print_node

read_file_time

print_time

read_file_debug

print_debug

finish_reading_file

print_system

print_device

print_node
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G-4 Building the System: wavebld.c

wavebld.c contains the following routines for building the system:

build_system Identifies System variables and

equations

Builds cross references

Builds System Structural Jacobian

Reduces system

build_system_identify Identifies system variables and

equations.

build_system_xref Builds cross references within the

system.

build_system_structural_jacobian Builds the system structural

jacobian matrix.

build_system_blocks Identifies the sequence of blocks for

solving system.

find_block Attempts to find a block of a given

size.

print_system_identify Prints system information.

sj_add Adds two Structural Jacobian

codes.

sj_sub Subtracts two Structural Jacobian

codes.

print_system_block_sjac Prints the block owner of each

element in the system sructural

jacobian matrix.

print_block Prints information about a block.
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The hierarchy for the routines inwavebld.c is given by:

build_system

build_system_identify

print_system_identify

build_system_xref

build_system_structural_jacobian

sj_add

sj_sub

print_structural_jacobian

build_system_blocks

find_block

print_block

print_structural_jacobian

- 328 -



G-5 Writing MATLAB M-File: wavewrit.c and wavewrta.c

wavewrit.c and wavewrta.c contain the following routines for writing the

output MATLAB M-File:

write_file Calls other routines to generate

MATLAB M-File.

write_file_header Prints header information to

MATLAB M-File.

write_file_initialize Prints System Initialization

parameters to MATLAB M-File.

write_file_time_loop Prints Time Loop algorithm to

MATLAB M-File.

write_file_plot_variables Prints algorithm to plot system

variables to MATLAB M-File

write_file_footer Prints Footer information to

MATLAB M-File.

write_file_solve_block Prints algorithm for solving block to

MATLAB M-File.

The hierarchy for the routines inwavewrit.c andwavewrta.c is given by:

write_file

write_file_header

write_file_intialize

write_file_time_loop

write_file_solve_block

write_file_footer
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G-6 Application Independent Files

Several Support files containing special C functions are required by WAVESIM.

These files were written by the author independently of WAVESIM and may contain

routines unused by WAVESIM.

G-6.1 ioliba.c

ioliba.c contains a number of functions for manipulating strings. The functions

used by WAVESIM are:

Stoda Converts a string to an array of double precision floating

numbers.

strextract Extracts thenth word of a string

strsplit Returns the remainder of a string after thenth word.

strstrip Strips a string of leading and trailing spaces, tabs, and

carriage returns

strncmpa Case insensitive version ofstrncmp for comparing the

first n characters of two strings.

strcmpa Case insensitive version ofstrcmp for comparing two

strings.
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G-6.2 getline.c

getline.c contains functions for reading in lines from a file and automatically

implementing the following features:

1. Comment Lines beginning with#, !, or% are ignored.

2. Blank Lines are ignored.

3. Lines can be continued with... or \.

4. If the first word of the line isINCLUDE followed by a filename, lines are read

from that file. (NOTE: A check for recursiveINCLUDE statements is

performed to prevent infinite loops)

5. Carriage Returns are truncated.

The functions used by WAVESIM are:

init_strm Initialization function

get_line Function used to read the lines in.
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G-6.3 get_file.c

get_file.c contains functions for opening input and output files. The following

features are implemented:

1. Two strings are passed: adefault filename string and anargument filename

string. Either or both strings may be empty.

2. If the argument filename is specified, the functions attempt to open that file.

If opening that file is unsuccessful, the user is prompted to enter a new

filename.

3. If theargument filename is empty, the user is prompted to enter a filename. If

thedefault filename is not empty, it is offered to the user as the default name

of the file. If opening the file entered by the user is unsuccessful, the user is

prompted to enter a new filename.

4. Users can exit the routine without opening a file by entering only aq when

prompted for a filename

5. Users can obtain a directory listing by entering a? followed by whatever file

specification the user desires.

6. Leading and trailing spaces in filenames are truncated.

7. Whatever filename is successfully opened is passed back as a newdefault

filename.

The function used by WAVESIM is:

get_input_file Function for opening an Input File

G-6.4 filebase.c

filebase.c contains functions for stripping an extension off of a filename and for

returning the extension of a filename. The following features are implemented:

1. An extension is defined as all the characters after the last period (.) found after

the last directory delimiter (\ for IBM-DOS and/ for UNIX). If no such period

is found, the extension does not exist.

The function used by WAVESIM is:

extract_base Extract the base filename (without extension)

- 332 -



G-7 Makefile

The UNIX make utility greatly eases the task of developing programs by only compiling

those files which have changed since the last compilation. Here is theMakefile used to

generate WAVESIM on a VAXstation 3100:

# Makefile for wavesim
#
# For Revision 2.0
#
FILES = wavesim.c ioliba.c getline.c get_file.c filebase.c \

waveinit.c waveread.c wavewrit.c wavewrta.c \
wavebld.c

OBJ = wavesim.o ioliba.o getline.o get_file.o filebase.o \
waveinit.o waveread.o wavewrit.o wavewrta.o \
wavebld.o

HEADER= wavesim.h ioliba.h
CFLAG = -g
COMPILE = cc
#
#
#
wavesim: $(HEADER) $(OBJ)

$(COMPILE) -o wavesim $(CFLAG) $(OBJ) -lm
wavesim.o: $(HEADER) wavesim.c

$(COMPILE) -c $(CFLAG) wavesim.c
ioliba.o: ioliba.h ioliba.c

$(COMPILE) -c $(CFLAG) ioliba.c
getline.o: getline.c

$(COMPILE) -c $(CFLAG) getline.c
get_file.o: get_file.c

$(COMPILE) -c $(CFLAG) get_file.c
filebase.o: filebase.c

$(COMPILE) -c $(CFLAG) filebase.c
waveinit.o: $(HEADER) waveinit.h waveinit.c

$(COMPILE) -c $(CFLAG) waveinit.c
waveread.o: $(HEADER) waveread.c

$(COMPILE) -c $(CFLAG) waveread.c
wavewrit.o: $(HEADER) wavewrit.c

$(COMPILE) -c $(CFLAG) wavewrit.c
wavewrta.o: $(HEADER) wavewrta.c

$(COMPILE) -c $(CFLAG) wavewrta.c
wavebld.o: $(HEADER) wavebld.c

$(COMPILE) -c $(CFLAG) wavebld.c

#
#
#
lint:

lint $(FILES)
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