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ABSTRACT

Naval shipboard electric power systems are transitioning from the relatively simple
distribution of ship service electric power to extremely complex integrated electric drive
(IED) systems. The optimal design of warships employing IED is presently hampered by the
lack of existing simulation computer tools for analyzing the highly coupled and controlled
electro-mechanical systems characteristic of IED. As a first step in the development of a
viable computer simulation tool, the numerical agorithm testing program WAVESIM was
created.

The key contributions of WAVESIM are the systematic treatment of waveforms as an
abstract data type, the development of the terminal description of devices, and the use of
structural jacobians in system reduction.

WAVESIM represents variables by waveforms consisting of a vector of coefficients
and a waveform type code indicating how the coefficients should be interpreted. The
principal advantage of using waveforms over conventional discrete point methods is the
avoidance of unstable integration techniques since for most waveform types, integration and
differentiation are linear matrix operations.

Devices are described in WAVESIM by relationships between terminal interface
variables. WAVESIM recognizes two types of terminals: normal terminals having both
potential and flow variables, and information terminals having only a potential variable. In
this manner, WAVESIM can simulate processes involving both energy transfer and control
signals.

WAVESIM extends the structural jacobian matrix concept to reflect the properties of
the dependence of system equations on system variables. The system structural jacobian
matrix is constructed from the constitutive device structural jacobian matrices and is used to
identfiy a sequence of smaller blocks when can be solved consecutively for all the system
variables.

To demonstrate and verify the capabilities of WAVESIM, severa simulations were
conducted. In all ssimulations, WAVESIM provide results matching data generated by other
simulation methods.
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Thesis Supervisor: Marija Ilic, Senior Research Engineer, Department of Electrical
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Chapter 1 Introduction

A revolution is occurring in modern warship design. The conventional mechanical
transmission train for transferring power from the prime movers to the ships screws will be
replaced in future warship designs by an integrated electric drive (IED) system. While
electric drive is not a new concept, the IED approach differs significantly from previous
electric drive implementations in that both propulsion power and ship service power (60 HZ
440 Volts AC) are derived from the same prime movers. The resulting flexibility in the
arrangability of the ship, in the design of the electric plant, and in the power available to
combat systems provides the naval architect with many opportunities for significantly
improving the combat effectiveness of modern warships.

Designing a ship taking full advantage of the opportunities afforded by IED is not an
easy task or even obvious. The ship designer has no precedent for an IED ship let done the
design of an IED electric plant. Instead, the designer must rely heavily on simulations of
proposed systems to evaluate the soundness of the design. For the electrical power system, a
suitable simulation environment must be capable of addressing these questions:

Will the Electric Power System Work?

Thisisthe ultimate question which needs to be answered. Unfortunately defining
the term work is not an easy task, nor is assuring a system will work under all operating
conditions. A strict time domain simulation only provides a solution for a given set of
operating conditions. Generalizing the results of relatively few simulations to al
operating conditions is both necessary and prone to catastrophic failure. Hence more
than just atime responseis usually needed.

How Will the System React to Major Disturbances and Faults?

The primary design goal for shipboard electric power systems is continuity of
power. To this end, the response of the system to abnormal events such as grounds,
stalled motors, and inadvertent opening of breakersis crucia to evaluating the success
of the electric power system design.

How Will the System React to Severe Dynamic Conditions?

A number of normal events can cause severe dynamic responses within the
system. Rapidly changing the propulsion motor speed or direction, discharging pulse
weapons, or starting large motors are all examples of normal dynamic events.

-10-



Isthe System Stable During a Given Dynamic Scenario?

One import aspect of a system that works is its stability. The system should
remain stable during all normal dynamic conditions and for as many disturbances and
faults as possible.

What isthe Stability Margin?
Some measure of how stable the system is should be provided to assist in
generalizing the findings of stability about one scenario to other related scenarios.

What isthe Sensitivity of the Resultsto Parameter s?

The generation of models for a dynamic system simulation requires some
estimation of device parameters. Knowledge of the sensitivity of the simulation results
to parameter estimation errorsis crucial for correlating simulation results with what can
be expected from the physical system.

How Correct arethe Answers Provided to the Above Questions?

Simulations generally use numerical methods to generate solutions. Careful
control of error propagation is very important in ensuring accurate conclusions can be
drawn from the simulation results. Some form of feedback should be provided to the
operator asto the confidence level of the results.

These requirements for performing time domain simulations of proposed and existing
electric power systems found on United States naval warships can be quite challenging. The
size, complexity, and strong coupling of components all conspire to make the simulator’s
task difficult. At first glance, one would think the simulation programs designed for the
commercia power utilities would be sufficient for handling the smaller shipboard systems.
Unfortunately, this is not the case due to the following differences of the shipboard system
from commercial power systems:

Variable Frequency

Frequency cannot be assumed constant. Many IED designs have the generators,
motors, and ship service power al operating at different frequencies to optimize the
performance of individual components. Frequency changers are employed to convert
the power from one frequency to another. Even the ship service system onboard
mechanical drive ships can experience frequency fluctuations lasting up to 2 seconds.
The limited rotational intertia of the prime movers and generators allows for rapid
accelerations and decelerations of the shaft and corresponding frequency fluctuations.

-11-



Lack of Time Scale Separation

The principal time constants of controls, machine dynamics, and electric
dynamics all fall within the same general range of milliseconds to seconds. The
practice of decomposing the problem by time scale separation often used in analyzing
commercia power systems becomes much more difficult.

L oad Sharing instead of Power Scheduling

The commercial power utilities operate by scheduling the power delivered by
each of the generating units. The mismatch between scheduled power generation and
the actual load is met by a swing generator. Onboard ship however, both real and
reactive power are shared equally among all paralleled generators through the very fast
exchange of load sharing information. This fast exchange of information strongly
couples the dynamics of al the paralleled generators.

Short Electrical Distances

The distances onboard ship are so short (under 1000 ft) as to make the modelling
of transmission lines unnecessary for most simulations and to trivialize the load flow
problem which is so important to the commercial power sector. The short electrical
distances also strengthen the coupling of the various subsystems making up the
electrical power system.

L oad Dynamics

Commercial utilities usually assume loads are either consuming constant real and
reactive power, or are constant impedances. Shipboard systems however, must account
for dynamics of loads such as propulsion motors, large pumps, pulsed loads, propeller
dynamics, and ship dynamics. Furthermore, the supervisory level control envisioned
for future designs may have the ability to control aspects of the loads in addition to
generation.

Tighter Control

Because a ship isrelatively small, a higher level of control can be exercised over
the shipboard power system than can be exercised in the commercial power industry.
This higher level of control strengthens the dynamic coupling of components of the
system and complicates simulation efforts.

Clearly, shipboard systems are considerably different from commercial power systems,
and the inapplicability to shipboard power systems of simulation techniques developed for
commercia systems should not be surprising. Other simulation tools exist but for one or
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more reasons, al are ill-suited for simulating shipboard systems. A review of currently
available commercial software for solving lumped parameter systems reveals no program
currenty exists suitable for fulfilling the needs of simulating shipboard electric power
systems.

Circuit Simulators

As will be discussed in following sections, circuit simulators almost universally
describe devices in terms of branch voltages and currents. The constitutive
relationships are based only on the relative difference of the termina variables and can
not depend on the actual nodal potentials. Furthermore, the flow variables must be
conserved on the device level. While these restrictions are not of concern for electrical
networks, they are a bit constraining on electro-mechanical systems where one would
like to deal with energy transformations in a device by employing equations which do
not conserve the flow variable on the device level. The torque on the input shaft of a
gearbox for example, does not equal the torque on the output shaft. Even electric
power models where the flow variable is power and the potential variable isvoltage can
best be described by constitutive equation which do not enforce conserving power by
ignoring the power converted to heat through resistive losses.

Many circuit simulator also have problems modelling the transfer of information
which is common in systems employing control systems. Information has only
potentials and no flows associated with it.

Signal Analysis Software

Signal Analysis Software is often used to simulate control systems but often have
difficulty simulating energy transfer. In particular, these programs often are incapable
of solving implicit equations which are typically created by writing Kirchhoff’s Current
Law when developing systems. Instead much effort must be expended to ensure the
models have the appropriate input and output variables for a given system to be built.

Commercial Power Utility Analysis Programs

Software for analyzing commercia power universally do not apply to shipboard
systems due to several key differences. The lack of transmission lines, rotationa
inertia, time scale separation of dynamics and the presence of tightly coupled control
loops are all features of the shipboard system which prevent the use of the commercial
power system analysis techniques [5] [9] [10] [11].
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General Differential Equation solvers

Most genera differential equation solving programs cannot handle implicit
equations very well. While the development and interconnecting of models into
systems is possible, the process can be quite cumbersome [12] [13]. Dynamically stiff
systems also pose serious challenges to the general differential equation solvers.

Hybrid Computers

Hybrid computers for studying electrical power systems can answer many of the
desired questions for small shipboard systems. Unfortunately, hybrid computers are
very expensive and limited in the size of problems which can be addressed. Presently
the only hybrid computer in the United States suitable for shipboard power system
studiesislocated at Purdue University. While this machine is capable, the needs of the
IED program will require digital computer techniques for performing the desired
studies. [92] [93] [94] [95] [96]

As part of an effort to fill the need for simulating shipboard power systems, the
WAVESIM program was specially created to develop applicable simulation techniques.
Before discussing the numerical methods employed in WAVESIM, a review of existing
methods is appropriate.

1.1 Simulation Process

The process of simulating a physical system can be broken into three steps. First, a
system of equations describing the component device constitutive relationships as well as
the network constraints must be developed. While the network constraints are purely linear
algebraic equations, the constitutive equations can be nonlinear and dynamic. Together, a
system of nonlinear differential algebraic equations is generated. The next step is the
conversion of the system of differential algebraic equations into a sequence of purely
algebraic equations. Common integration techniques include the forward and backward
Euler methods, Trapezoidal rule integration, and the Runge-Kutta methods. Finally, the
nonlinear algebraic system is solved either through the Newton-Raphson method or through
one of several relaxation techniques.

Before describing several methods for generating and solving the system of equations
corresponding to a physical system, the difference between the branch description and
terminal description of devices should be detailed. The branch description of devices
requires all the constitutive relationships be based on the relative difference between
terminal potentials and al flows entering a device also leave the device. Hence for a two
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terminal device, there is asingle branch potential variable and a single branch flow variable
associated with it. In the terminal description, the potential and flow associated with each
terminal are variables. A two termina device would then have four variables associated
with it: two flow variables and two potentials. The terminal description alows the
constitutive equations be a function of the actual values of the terminal potentials and not
only of the potential difference. In other words, the potential reference can be set at the
system level and not necessarily on the device level. Furthermore, the flows are not
required to be conserved. A gear box for example, has differing torques entering and
exiting it. The branch description method requires a four terminal model of the gear box
while the terminal description requires only two terminals. In either case the result would
be four variables describing the gearbox, but the branch description requires an explicit
declaration of the device potential reference while the terminal description uses an implicit
system wide potential reference.

Branch Description vs. Terminal Description

. iR

Vo hz
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1.2 Developing System Equations

The normal method of describing a dynamic system is to generate a consistent set of
possibly nonlinear differential algebraic equations and arrange them into the following
canonical form:

Cx =f(x,y,u)
0=g(x,y,u)

where X is the vector of dynamic state variables, y is the vector of state variables with no
associated dynamics staes, and u is the vector of system inputs. This system of differential
algebraic equations (DAE) can be generated several different ways with the most common
being the Sparse Tableu, Modified Nodal Analysis, and the standard load flow method.

The method employed in WAVESIM does not extract the differential equations from
the device constitutive equations but instead forms a system of algebraic equations of the
form:

0=9(X,g(x;,u),u)

where X is the vector of the system variables and g;() is a device function having subsets x;
and

u.

of x and u as arguments. The functions g,() have the dynamics of the device contained
within them, but these dynamics are not expressed on the system level.
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1.2.1 Sparse Tableau Method

The Sparse Tableau method is a very general method for describing systems
employing the branch description of devices. Proposed in [4] and used in the ASTAP and
SPICE simulators [1][15][16], the Sparse Tableau method breaks the system equations and
variables each into three groups. The three sets of variables are the branch currents, branch
voltages, and the nodal voltages. The three sets of equations are the node Kirchhoff
Current Law (KCL) equations in terms of the branch currents, Branch Voltage equations
relating branch voltages to nodal voltages, and the Constitutive equations relating branch
voltages to branch currents.

Figure 1.2.1-1 RC Example: Sparse Tableau

Figure 1.2.1-1 shows an example of a simple RC charging circuit. Using the Sparse
Tableau approach, the system variables are:

is V oltage Source branch current
Ir Resistor branch current

ic Capacitor branch current

Vg V oltage Source branch voltage
Vi Resistor branch voltage

Ve Capacitor branch voltage

e Node 1 potential (voltage)

e Node 2 potential (voltage)

Note the reference node 0 is assigned a potential of 0.
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The KCL equations are given by:

ig+iz=0 —-ig+ic =0

The Branch Voltage equations are:

vs—¢ =0 Ve—¢6,=0

The Constitutive equations are:
Vs—Vg=0 . dvc
Vg —IgR =0
While the Sparse Tableau approach generates a consistent set of network equations,
the size of the system is relatively large (eight equations in eight unknowns for this

example). Furthermore, the method employs the branch description of devices which
complicates the development of electro-mechanical models.
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1.2.2 Modified Nodal Analysis

The Modified Nodal Analysis method generates a compact set of system equations
for systems of device models using branch descriptions. Modified Nodal Analysis (MNA)
was formalized in [6], described in [1][16], and employed in the circuit simulator MSINC.
The procedure consists of writing the KCL equations for all but the reference node in terms
of the branch currents, replacing the branch currents wherever possible with constitutive
eguations in terms of the branch voltages, appending any remaining constitutive equations,
and substituting the branch voltages with the corresponding nodal voltages.

Figure 1.2.2-1 RC Example: M odified Nodal Analysis
+ Vp —

R
GWQ
1S + = T JIC

N T =

0

Figure 1.2.2-1 shows a ssimple example of a simple RC charging circuit, the MDA
approach would first write the KCL equations:

is+iz=0 —-ig+ic =0
Substituting the constitutive relations results in:

.1 1 dvc
IS+§VR—O —§VR+C—:O

The extra constitutive equation is given by:

v,—Vg=0
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Substituting the nodal voltage resultsin the system of three equations

o1 B 1 de,
s+ (6-€)=0 —R(&.m8)+C~=0

e-Vs=0

While the Modified Nodal Analysis Method generates a compact set of equations, it
does require the use of the branch description as well as the explicit definition of flow
variables. Both restrictions can complicate teh modelling of electro-mechancial devices.

-20-



1.2.3 Standard Load Flow

The Load Flow approach is traditionally used in the analysis of commercial power
systems. For this application, the flow variables are usually real and reactive power while
the potential variables are the voltage magnitude and phase angle. The Load Flow
approach is a variation of nodal analysis described in many papers and texts on power
systems including [14] [29] [31] [35] [49] [50] [76] [101]. The terminal description of
devices is used since power flow is not conserved on the device level (The power entering
a transmission line is not the same as the power leaving the same line). The basic
procedure is to write the KCL equations in terms of the node potentials. Nodes with ideal
potential sources are treated specially since their corresponding flow variable is not a
function of the device voltages.

Figure 1.2.3-1 RC Example: Load Flow

iR]L R 1R2

1 =N N A== €2

. V V .

181+ VS1 R1 RE +1C1
C1

@ VS v —
— C2

I |
32* S22 0 1o

Figure 1.2.3-1 shows a ssmple RC charging circuit using the terminal description of
the devices. A load flow approach using currents as the flow variable would result in the
following procedure:

Write the KCL Equation at nodes without potential sources

Ipp +ig, =0

Substitute Constitutive relationships for the flow variables

d(Ve = Ver) _

dt 0

1
R (Ve =Ve1) +C
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Substiute the nodal potentials

1 de,
ﬁ(ez Vs)+CE_O

All the remaining variables can be calculated from the solution of this differential
equations. The load flow method definitely creates a very compact set of equations (only
one in this case) but requires the flow variables be defined explicitly in terms of the
potential variables, and must treat ideal potential sources as special exceptions. Neither of
these restrictionsis attractive for ageneral electro-mechanical system simulator.
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1.2.4WAVESIM Terminal Description

The method employed in this thesis is similar to Modified Nodal Analysis with the
exception that terminal potentials are used instead of branch voltages and that the
constitutive equations are only expressed on the device level and never expressed on the
system level. Potential difference equations are appendended to the system of KCL
eguations to equate explicitly defined potentials with their node potentials. For the RC
example, the system variables are given by:

Ig Voltage Source terminal 1 current
ic1 Capacitor terminal 1 current

& Node O potential (voltage

e Node 1 potential (voltage)

e Node 2 potential (voltage)

Figure 1.2.4-1: RC Example: Terminal Description
IR1 R iRz
elﬁ’/\¢f\/“§f?ez
isﬁ vy RI "R2 FCl
v
C1
— C2 *
i v .
32* S 1o

€0
g =—""C

The KCL Equations for the RC example are given by:
ig + gR_iRl(eP e)=0
eyt gR_iRz(ep e)=0

i+ gS_iSZ(iSL’ &)+ gC_iCZ(iC1’ &) =0
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The Potential Difference Equations are given by:
€~ gC_vCl(iCI’ &) =0
€~ gS_vSl(iSL’ &) =0

&~ gG_vG(iG) =0

Note that a reference device alowing for a more general method of setting the
system reference points is employed rather than a reference node. While the number of
equations is twice that of the Modified Nodal Analysis method, flows need not be
conserved on the device level. Furthermore, the system of equations is easily partitioned
into a sequence of five blocks for a more rapid solution (two 1x1 blocks, followed by a
2x2 block, followed by two more 1x1 blocks).
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1.3 Solving System Equations

As stated earlier, the standard approach to simulating a physical system is to generate
asystem of differential algebraic equation of the form:

Cx =f(x,y,u)
0=g(x,y,u)

To solve this system, it must first be converted to a system of purely agebraic
equations by substituting the differential equations with discrete approximations. The time
history of a variable is expressed as a series of discrete points in time where dynamics are
expressed as agebraic relationships between the values of a variable at different discrete
times. Standard methods for performing this approximation include the forward and
backward Euler, Trapezoidal rule integration and Runge-K utta methods.

The major problem with this approach is the dependence of the time step on the fastest
mode (smallest eigenvalue) of the dynamic system. This forces the entire system be solved
with a very fine discretization of time, even though large portions of the system are not
affected by the fast mode.

In any case, the system of nonlinear algebraic equations must be solved. The two
classes of solvers most commonly used are variations of the Newton-Raphson Method and
several relaxation methods.

1.3.1 Newton-Raphson M ethod

The Newton-Raphson method works well for most systems as long as the initia
guess for all of the variables are within the convergence region of the final solution. This
method is used in SPICE and ASTAP and is based on a Taylor series expansion of the
system of equations:

The matrix J is caled the Jacobian Matrix and its inverse must exist for the

method to work.
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1.3.2 Relaxation

Relaxation methods assign one of the system variables to each of the system
eguations. After initial guesses are made for each of the variables, the variables are
updated by solving their corresponding equation assuming none of the other variables have
changed. The two most popular relaxation methods are the Gauss-Jacobi (popular with
parallel processing computers) and the Gauss-Seidel method (usually used with serial
processing computers). The Gauss-Jacobia calculates updates for all the system variables
before actually performing the update:

F(X)=0
Fo([Xeio Xokor X katr s X100 % -1d ) =0
The Gauss-Seidel method updates the system variables as the updates are cal cul ated:
F(X)=0
Fi([Xeian Xokans X ganr s Xn—110 % -1d ) =0
1.3.3 Waveform Relaxation

An alternate method to solving the dynamic equations system wide is to solve them
eguation by equation over a given time interval. The Waveform Relaxation method
represents variables by a sequence of points representing the time history of the waveform
over agiventimeinterval. Each variable can be discretized differently and is assigned one
of the system equations. The system equations are solved over the waveform interval for
their assigned variable with the other variables held at their current waveform values.

Waveform Relaxation works well with loosely or directionally coupled systems, but
does not work well for tightly coupled systems. The method does however, have good
multirate performance since each differential equation can be solved using a time
increment appropriate to it.

1.3.4WAVESIM Approach

To summarize the traditional solving methods, the standard methods employing
Netwon-Raphson can handle tightly coupled systems but perform poorly with multirate
systems while waveform relaxation performs poorly with tightly coupled systems but
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efficiently solves multirate problems. Unfortunately, the shipboard systems have both
multirate and tightly coupled properties. For this reason, WAVESIM combines the
Newton-Raphson method with a waveform representation of variables.

In WAVESIM variables are represented over a time interval by a vector of
coefficients along with a type indicator for specifying how the coefficients should be
interpreted. Common interpretations include Legendre Series coefficients, Chebyshev
Series coefficients, and polynomia series coefficients. For these representations,
integration and differentiation are linear matrix operations and the issue of numerical
stability of an integration technique disappears. Waveforms can usually be converted
from one type to another with alinear matrix operation as well.

With variables represented as vectors of coefficients, the Newton-Raphson method
can be employed for solving tightly coupled systems. Good multirate performance is
achieved through the linear matrix operator for integration along with waveform
smoothing to average out phenomenafaster than the time scale of interest.

1.4 Thesis Outline

This thesis focuses on developing a digital computer simulation environment suitable
for studying shipboard electric power systems. WAVESIM, a ssimulation program written
in the C programming language demonstrates algorithms for simulating systems of
nonlinear lumped parameter models representing the electro-mechanical components
composing an |ED system. The key features of WAVESIM are:

Devices defined independent of the encompassing systems
Devices can be developed and tested without an exact knowledge of the
topology of the systemsincorporating the devices.

Devicesdescribed using the Terminal Representation of devices

Device constitutive relationships are written in terms of the actual values of the
terminal potentials and not in terms of relative potentials. In this manner, device
equations can be written in terms of a system reference when such areference level is
unambiguous. Furthermore, the flow variables are not required to be conserved on a
device level. This greatly eases the task of modelling flows which also depend on a
reference potential (power for example).
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Devices defined independent of the manner in which terminal interface variables
are expressed.

Devices can be developed without specifying how the interface variables are
specified. In WAVESIM, variables can be represented many different ways, all of
which are irrelevant to the specification of the constitutive equations making up the
device.

System equationsinstead of the devices resolve input-output conflicts.
WAVESIM does not constrain normal terminals where energy is transferred
from having more than one output hooked together at a node.

Interface Variablesrepresented by wavefor ms

Waveforms are a vector of coefficients which specify a given variable over a
given time interval instead of a single value describing the variable at a given point in
time. The waveform type determines how the coefficients should be interpreted for
generating values of the variable within the time interval. Representing variables as
waveforms has the primary benefit of removing the issue of numerical stability of
integration techniques from the smulation. Integration and differentiation are merely
operators on waveforms, no different from addition, subtraction, or any of the
trigonometric operators.

Differentiation and Integration performed on the device level instead of the
system level.

Most circuit simulators as described in the previous sections solve the
differential equations associated with device constitutive equations on a system level.
This method eases the task of evaluating the stability of linear systems but introduces
new problems. If the eigenvalues of a dynamic system are widely separated in value,
the simulation time step must be made very small for the entire system if conventional
integration techniques are employed. WAVESIM solves the differential equations on
the device level and employs waveform smoothing to remove dynamics which occur
faster than the time scale of interest.

While many of the pieces of WAVESIM are not new, several key concepts are
presented in this thesis for the first time:

The Terminal Description of devices
Instead of specifying the interface of devices by ports consisting of a potential
difference (branch voltage) and the flow through the potential difference (branch
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current), the terminal description of a device assigns a potential and a flow entering
the device for each norma terminal. Simulators based on branch voltages and
currents require all of the flow entering a device to also leave the device. In this
sense, the flow is conserved. The terminal description however, does not require
conservation of flow within a device (Conservation of flow as expressed by
Kirchhoff’s Current Law - KCL is required at connection points called nodes). The
ability to construct models which do not conserve flows can simplify models where
energy transformations occur, the reference potential is clearly known for the system
and not just for the device, and certain forms of energy are not of interest. In many
mechanical simulations for example, the amount of energy lost in friction is not of
interest to the modeler. A ssimulation model based on branch potentials and flows of a
device experiencing friction would be required to reject the frictional heat through one
of its branches.

The terminal description aso allows for the transfer of information between
devices through information nodes and information terminals. This feature is
essential for successfully modelling many control algorithms. The ability to mix
control signals and energy transfer through flow variables within the same simulation
environment is amajor advantage of the terminal description.

The Structural Jacobian method for building and reducing systems

The concept of the connection matrix for specifying the participation of system
variables in system equations is expanded to include the structural form (i.e. diagonal,
linear, nonlinear, etc.) of the dependence of the system equations on the system
variables. The codes for the structural Jacobian adhere to a ssmple set of algebraic
rules which can be used to construct a system structural Jacobian matrix from the
individual device structural Jacobians. The system structural Jacobian facilitates the
reduction of the numerical effort required to solve the system by identifying and
characterizing a set of smaller blocks which when sequentially solved, determine all
of the system variables. The system structural Jacobian can also be used to detect
unconnected systems and indicate possible potential reference problems.

The Systematic Treatment of Wavefor msas an abstract data type

WAVESIM departs from the conventional paradigm of representing variablesin
adynamic simulation by a series of discrete points in time with a new paradigm based
on representing variables as a sequence of waveform intervals. Within each
waveform interval, the value of the waveform can be directly determined for any time
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based on a vector of coefficients, a waveform type indicator for specifying how the
vector of coefficients should be interpreted, and the time boundaries of the waveform
interval. Devices are defined independent of the waveform type of the terminal
variables. The principle advantage of using waveforms is that integration and
differentiation are simple operators. The integra of a waveform is just another
waveform. Simulation time steps are no longer controlled by the requirement for
numerical stability of the integration technique. Instead, series truncation error
control becomes the primary concern of the simulation environment. The ability to
use arbitrary waveform types and convert between types allows the modeler to use the
most appropriate waveform representation for the modeling problem.

This thesis is composed of six chapters including this introduction. Chapter Two
describes in some detail the specific properties of current shipboard electric power systems
and proposed integrated electric drive systems. Chapter Three provides a framework of
theory for developing the simulation environment WAVESIM and is broken into five
subsections. The first subsection details the Terminal Description method for modelling
devices. The second subsection demonstrates how to interconnect device models into
systems, construct the system structural Jacobian, and generate a sequence of blocks for
solving the system equations. The third subsection covers the treatment of waveforms as an
abstract data type. Solving the system of equations employing waveformsis detailed in the
fourth subsection. The fifth and final subsection of the third chapter covers modelling
techniques and considerations not covered in previous sections. The actual WAVESIM
implementation of the concepts developed in the third chapter are described in the fourth
chapter. The fifth chapter presents results of several simulations conducted with
WAVESIM. Thefina chapter provides an assessment of the work presented here aswell as
possible future developments.

The appendices support the main chapters. Appendix A is a glossary of terms used
through out thisthesis. Appendix B details some possible problems with using continuation
parameters. Appendices C and D are Load Flow examples of the terminal description
method. Appendix E provides examples of waveform types and a number of operators for
them. Appendix F presents a number of models useful for conducting shipboard power
system simulations. Finally, Appendix G details the program files making up WAVESIM.

Thisthesis introduces a number of new terms. To assist the reader, the first occurance
of anew term isindicated by the distinctive Helvetica typeface. MATLAB variable names
and sample sections of C programs are printed in Cour i er .
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Chapter 2 Shipboard Electric Systems
2.1 Typical Shipboard Electric Distribution System

The electric power systems onboard naval warships differ considerably from the
integrated power utilities found in developed countries. The differences arise from the
small size of the shipboard systems and contrasting standards for optimization. Shipboard
systems are optimized for survivability and minimization of weight and volume. Power
utilities on the other hand optimize for reliability and minimization of cost. The unique
characteristics of the shipboard systems result in markedly different design requirements
and standards as compared to power utilities.

Frigates, destroyers and cruisers are relatively small warships with corresponding
small electric power systems. Frigates normally displace from 2000 to 4000 long tons
(1 long ton = 2240 Ibs) and have a primary mission of escorting merchant convoys. In the
U.S. Navy, frigates have only one propulsion shaft and about half the armament of a
destroyer. Destroyers displace from 4000 to 7500 long tons and are designed as escorts for
aircraft carrier battle groups. Cruisers are larger than destroyers, displacing from 6000 to
16000 long tons, carry more weapons, and are used to provide aircraft carrier battle groups
with integrated anti-aircraft and anti-cruise missile defenses. U.S. Navy cruisers and
destroyers al have two propulsion shafts.

The installed electric plant capacity for U.S. warships has varied from 3000 KW to
4500 KW per propulsion shaft over the past twenty years. Generally, the newer ships have
more installed capacity. Figure 2.1-1 shows the electric plant characteristics for the major
classes of conventionally fueled frigates, destroyers and cruisers constructed in the past
twenty years. All the listed ships with the exception of the Knox class frigates use
mechanically coupled gas turbine propulsion. The Knox class frigate is the last class of
conventionally fueled warships to use 1200 psi steam for main propulsion. (All nuclear
powered ships use 600 psi steam). Most of the Knox class frigates are presently being
transferred to the reserve forces or being decommissioned.
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Figure 2.1-1 U.S. Navy Ship Characteristics

Ship Class (Nbr) Name KW Generator Type |Year
FF-1052 Frigate Knox 4 x 750 KW | 3 Steam Turbine | 1969
(46) 1 Diesdl
FFG-7 Frigate Oliver Hazard | 4 x 1000 4 Diesdl 1977
(51) Perry KW
DD-963 Destroyer Spruance 3 x 2000 3 GasTurbine |1975
(31) KW
DDG-993 Destroyer Kidd 3 x 2000 3 GasTurbine |1981
4 KW
DDG-51 Destroyer | Arleigh Burke| 3 x 3000 3 GasTurbine |1991
(1+28) KW
CG-47 Cruiser Ticonderoga | 3 x 2500 3 Gas Turbine |[1983
(19 + 8) "Aegis' KW

Figure 2.1-2 Shipboard Electric Distribution System

Field
Excitation

Switch
Board

Synchronous
Machine

Load

Gas Turbine

Information

&— Electric Power

O:) Mechanical Power

Switch
Board

Machine

Load

-32-

Field
Excitation

Synchronous

Switch
Board

Synchronous
Machine

Excitation

Gas Turbine




Figure 2.1-2 shows a typical ring bus architecture found on modern warships. The
small size of the shipboard system results in many differences with respect to commercial
systems. As a consequence the analysis of the shipboard plant requires recognition of these

differences:

1.

7.
8.

Power Quality requirements relaxed relative to commercial
standards. Constant frequency and voltage assumptions
can not be made. See section 2.2 for more details.

Very little Rotational Inertiarequire fast controls to
maintain frequency. Infinite bus assumption does not hold.

Transmission lines are very short and for the most studies,
can be ignored.

No scheduling of real or reactive power. All generators
areloaded in equal proportion to their rating.
Load Flow solution has little meaning.

L oad sharing information communicated to all online generators.

Large loads (relative to the size of generation plant) present.
Start up transients (load dynamics) are important.

Power Electronic Switching loads are significant.

Load shedding strategies are minimal.

Figure 2.1-2 also indicates the requirement for a simulation environment to include
the ability to model more than just electric power phenomena. Modelling shipboard
systems al so requires extensive representation of mechanical dynamics aswell as energyless
information transfer between components. This requirement is significant in that simulation
packages for commercial power systems do not include this capability as an integral part of
the simulation environment design.

2.2 Shipboard Electric Plant Standards

The primary standards for designing a shipboard electric plant are contained in the
following references:

Department of Defense, Interface Standard for Shipboard Systems, Section 300A,
Electric Power, Alternating Current (Metric), MIL-STD-1399(NAVY), 13
October 1987.
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Department of the Navy, General Specifications for Ships of the United States Navy,
Section 300, General Requirements for Electric Plant, Naval Sea Systems
Command, 1987.

Department of the Navy, General Specifications for Ships of the United States Navy,
Section 320, General Requirements for Electric Power Distribution Systems,
Naval Sea Systems Command, 1987
The goal of electric power utilities is to provide a reliable source of high quality

electric power at minimum cost. Shipboard systems on the other hand are designed to

provide a survivable and continuous source of electricity. Quality and cost are secondary
issues. Figure 2.2-1 summarizes the minimum quality of power a shipboard system must
provide

Figure 2.2-1 clearly demonstrates the quality of power guaranteed onboard a warship
is considerably lower than the quality of service provided by power utilities. Figure 2.2-1
does not show however, how often the transient conditions occur. This information is
provided by MIL-STD-1399 and summarized in figure 2.2-2. A major ramification of the
low quality of power provided by the ship service electric system is that loads must be
designed to operate and survive wide ranges of voltage and frequency fluctuations. Thisis
one of the reasons why commercial equipment often can not be directly installed onboard
ships (Shock requirements are also a major factor). Sensitive loads must provide their own
filtering and protection circuitry. This militarization of equipment can add considerable
cost and complexity to warship design, outfitting and maintenance.



Figure 2.2-1 : Shipboard Electric Power Quality Standards (MIL-STD-1399)
Frequency
Nominal 60 Hz
Tolerance +3%
M odulation® 05%
Transient Tolerance +4%
Transient Recover Time 2 seconds
Worst Case Excursion +55%
Voltage

Nominal 440/115 Volts

Tolerance of 3 Phase Ave +5%

Tolerance of any 1 Phase +7%

Line Voltage Unbal ance? 3%
Voltage Modulation 2%
Transient Tolerance +16 %

Maximum Departure Voltage from +6%
combination of 3 Phase Ave. and
Voltage Modulation
Worst Case Excursion + 20 %
Recovery Time 2 Seconds
Voltage Spike® 2500/ 1000 Volts
Voltage Waveform
Max Total Harmonic Distortion® 3%
Max Single Harmonic 2%
Max Deviation Factor® 5%
Emergency
Frequency Excursion -100 % to +12 %
Voltage Excursion -100 % to +35 %
Duration 2 Minutes

Enmax ~ Emin

= 100 measured over aperiod of 1 to 10 seconds.

1 Modulation (percent) =

nominal

2 Line Voltage Unbalance is the difference between the largest line to line voltage and the
smallest line to line voltage divided by the nominal voltage.

3 A Voltage Spike is a voltage change of less than 1 ms duration.

4 Total Harmonic distortion is the ratio of the rms value of the residue (after elimination of
the fundamental) to the rms value of the fundamental.

5 Deviation Factor is the ratio of the maximum difference between corresponding ordinates
of the waveform and an equivalent sine wave to the magnitude of the equivalent sine wave.
The equivalent sine wave is defined as having the same frequency and rms voltage as the
wave being tested.
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Figure 2.2-2 Shipboard Electrical Reliability

Voltage Transients of 10% or less Several times an hour
Voltage Transients of 10% to 16% Several times aday
Voltage Spikes above 200 Volts About once every 3 hours

The basic reason for the low quality of power onboard ship is the lack of rotationa
inertiain the power system. In the commercial sector, the inertia of al the generatorsin the
network add up to such a large number that no single fault can cause a frequency
disturbance system wide. Onboard ship however, generators are often operated
independently. Other than the inertia provided by motors, the only source of rotational
inertia is the one generator. Since the generators are not very large, sudden load changes
and faults can cause significant disturbances. Although speed governors and voltage
regulators have improved significantly in the past twenty years, there is presently no way to
prevent the transients from happening.

The frequency tolerance limits in the steady state are rarely ever approached in
modern warships. The rather loose tolerances allowed the use of droop governors to stably
share loads. The electric plant operator on older ships could increase the load on a
paralleled generator by increasing the base frequency set point on the mechanical speed
governor. Adjusting the system frequency without changing the load sharing ratios required
adjusting the base frequency set points on all the generator speed governors. On modern
warships, al the generators normally operate isosynchronously and perform load sharing by
transmitting load current information to Governor Control Units which provide feedback to
the isosynchronous governors.

2.3 Shipboard Electric Plant Design

In the commercial sector, the design of electric generation and transmission capacity
are done continuously. Ships on the other hand, have afinite life (typically thirty years) and
the expense of upgrading the capacity of the electric plant and distribution system once the
ship is built is usually prohibitive. In this sense, capacity expansion onboard ships is not
done. Instead, excess capacity isinitially installed to account for projected growth in load.

The maximum load for a ship design is determined by tabulating every load in an
Electrical Load Summary and summing up the power requirements under different
operating conditions. The maximum projected load usually occurs when the ship isin battle
condition and the ambient temperature is low (Electric heaters are used in many areas of a
ship). To account for uncertainty in estimating loads, a 20 % margin is added to the
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maximum projected load. Another 20 % margin is added for capacity expansion
requirements. Ninety percent of the capacity of all but one of the installed generators must
meet or exceed the margined maximum projected load. The ninety percent requirement
allows for imprecise load sharing when at maximum load while the all but one requirement
accounts for taking one generator off line for maintenance.

Figure2.3-1

U.S. Ships - Electrical Loads

5356

4299

(Thousands)
w
T

2235

Electric Load 10 F - Battle Load (KW)

DD963 CG47 DDG51

R Propulsion XX Electrical V77 Aux systems [ HVAC N\] Combat Systems

Once the size of the electric plant is determined, there are a number of other
considerations that must be accounted for. GENSPECS’ require the system be ungrounded
and based on Split Plant Operation (Each generator operating independently) with the
capability for parallel operation. Electromagnetic Interference (EMI) and Electromagnetic
Pulse (EMP) requirements place further constraints on the electric plant design and are
detailed in MIL-STD-461 and MIL-STD-1310. Since warships are designed for combat,
they must also be capable of surviving severe mechanical shocks from exploding ordnance.
The shock requirements are particularly important for electrical equipment such as circuit
breakers and generators. Specific requirements for shock are listed in MIL-STD-901.

6 General Specifications for Ships of the Unites States Navy
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A number of loads onboard a ship are very important for survival of the ship and crew
during combat and emergencies. These loads are designated vital loads and must be
provided with primary and alternate sources of power. Some of the vital loads have
automatic bus transfer switches (ABT) which switch to the aternate source automatically
on loss of the primary source. Others use manual bus transfer switches (MBT). Examples
of vital loads include:

Collective Protection System Class W ABT
Ventilation
Emergency Communications MBT
Emergency Lighting ABT
Fire Pumps ABT
AFFF Pumps ABT
Interior Communications ABT
Machinery Space Circle W Ventilation MBT
Steering Gear Auxiliaries ABT
Surface Search Radar MBT
VHF Bridge-to-Bridge Radio MBT
Vital Propulsion Auxiliaries MBT and ABT
Auxiliaries to support generator prime MBT
movers

From a naval architectural viewpoint, the placement of electric generators requires a
number of compromises. Placing the heavy generators as low as possible is beneficia for
hydrostatic stability purposes. The lower the generator however, the more volume is
required for intake and exhaust ducting. Gas turbine generators are lighter than diesel
generators, but require greater volumes of air. Furthermore, design requirements exist for
separating 50 % of the installed capacity by two watertight bulkheads and installing a
minimum of three generators. Generally, weight can be minimized by using the smallest
number of generators (three). However, if four generators are used, the generators can be
located in two machinery spaces instead of three. By using only one set of intake and
exhaust ducts, volume for ductwork can also be reduced. Since most recent ships have had
weight constraints placed on them by Congress, the minimum number of generators have
been used.’

7 A very simple cost model for warships assigns a cost per ton of different components of a
ship. With thisin mind Congress has in the past placed constraints on the weight of shipsin
order to keep costs down.
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Enclaving is a concept for arranging ships which involves locating all the equipment
required for a given combat system within the same general area of the ship. If aship is
completely divided into a number of enclaves, one enclave can be damaged by enemy
ordnance while the others remain functional and capable of continuing the engagement. To
work properly, this concept requires the enclaving of sources of distributed services (such as
electricity, cooling water, fire fighting water and dry air). Presently, enclaving has not been
incorporated in any warship design but its use has been proposed for a number of new
designs®. If enclaves are ever used, they will have a significant impact on the type, size,
number, and location of electric generators. In some enclaves it may not even be possible to
locate a conventional generator. Alternate generating or storage devices such as fuel cells
or batteries may be used.

2.4 Integrated Electric Drive

Most modern warships mechanically couple the main propulsion prime movers with
the propeller shaft. The mechanical power train is very efficient but imposes constraints on
machinery arrangement and adversely impacts survivability. The prime mover is usually
very heavy and must be located near the center of the ship to prevent excess trim. Shafting
must therefore penetrate a number of watertight boundaries and maintain precise alignment
over a great distance. The long length and precision requirements of the shafting make it
very vulnerable to weapon induced damage. While electric propulsion eliminates many of
the survivability and arrangement constraints of the mechanical system, the propulsion
system must be carefully designed to ensure overall plant efficiency is not degraded by the
extra power conversion losses in converting to and from electric power. Designed properly,
an electric drive system can achieve the survivability and arrangeability benefits without
suffering from alower propulsion plant efficiency.

Integrated electric drive interconnects the generation of power for propulsion with the
generation of ship service electric power. The propulsion plant for U.S. warships typically
averages between 30 and 37.5 MW per shaft. The capacity is sized to provide enough
power to propel the ship at a desired maximum speed. Most ships however, do not operate
for extended periods of time at maximum speed. Operating at half maximum speed requires
only about 20 percent of the installed power and quarter maximum speed requires only 2 or

8 Enclaving requires a greater redundancy of equipment which results in the ship becoming
larger and more expensive. Since most ship designs are cost constrained, enclaving
provisions are often deleted to reduce the per unit price of the warships.
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3 percent. Thus a 28 knot frigate with a 30 MW plant could go 7 knots using less than 1
MW of power and 14 knots with about 6 MW of power. If the propulsion plant consists of
two 15 MW generators, one generator could easily supply all the required power for both
propulsion and ship service at the normal operating speeds of 12 to 15 knots. This has the
potential of reducing the fuel consumption of warships under normal operating conditions
by improving the overall efficiency of the power plant even though the efficiency of the
power transmission system islower. By careful selection of generator number and size, one
can tune the overall efficiency of a plant for optimization at several different speeds. In the
U.S. Navy, optimizing plant efficiency for 20 knots is beneficial since thisis the speed used
to calculate the amount of fuel carried by the ship.’

In a typical integrated electric drive scheme, the propulsion prime movers are
connected to both a propulsion generator and to a ship service generator (PDSS or
Propulsion Derived Ship Service). The speed of the generator is set to optimize efficiency
of the prime mover at the given power loading. Consequently, cycloconverters are used to
convert the power to either 60 Hz for ship service, or to whatever frequency the propulsion
motors require. Usually, an additional diesel or gas turbine ship service generator is
included to provide power in port or during emergencies. Figure 2.4-1 shows a typical
PDSS design for a two shaft frigate sized ship.

Figure 2.4-1 emphasizes the need to model mechanical dynamics and control
information signals. The control signals can couple the dynamics of different devices
within the system and must therefore be carefully modelled. The control signals can also
destroy such properties as diagonal dominance which makes analysis of commercial power
systems much easier.

One of the features of an electric drive system which may be exploited in the future is
the ability to divert all of the propulsion power capacity from propulsion to some sort of
high power combat system. Weapons such as rail guns and high energy lasers may become
possible. These types of weapons would be safer for the ship since the requirement to store
large amounts of chemical explosives for propellent charges would be reduced. Energy to
move projectiles would be stored in the form of relatively inert fuel oil instead of highly

9 Most other navies use 18 knots which allows for combined plants such as CODOG where a
diesel engineisused for cruising and a gas turbine for high speed. Unfortunately, the size
requirement for adiesel capable of propelling aship at 20 knotsis prohibitive and resultsin
U.S. warships only using gas turbines and carrying much more fuel.



Figure 2.4-1 Integrated Electric Drive
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explosive chemica propellents. Switching large amounts of electric power onboard ships
presents a number of technical challenges both in the design of physical equipment and also
in attempts to accurately simulate the phenomena. The effect of pulse loads on the electric
system isnot atrivial simulation problem.
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Chapter 3 Framework

Conducting time domain simulations of systems of nonlinear lumped parameter models
characterizing shipboard electric power systems requires an organized approach to
developing device models as well as network equations. The major contribution of this
thesisis the development of a simulation environment having the following properties:

1. An object oriented approach to developing the mathematical description of devices
independent of the manner in which the variables are represented.

2. An organized method for generating system equations for interconnecting device
modelsinto subsystems and systems.

3. An agorithm for solving the system equations and variables by identifying smaller
blocks of equations and variables which can be sequentially solved. The
algorithm develops the concept of the device structural jacobian matrix and the
system structural jacobian matrix.

4. The ability to use a wide range of methods to describe variable waveforms. In
particular, describing waveforms through vectors of coefficients of polynomial
series, orthogonal function series, and data series are stressed.

5. The ahility to solve the system of equations by employing either the
Newton-Raphson Method or Waveform Relaxation. The Newton-Raphson
method is modified to improve convergence properties through the use of
continuation methods.

This chapter is organized into five parts. The first part defines the device which is the
fundamental building block of the system simulation. The second part shows how to
interconnect several device models into systems and subsystems. The third part defines the
waveform as a vector of coefficients to approximate waveforms over time intervals. The
fourth part details the actual procedure for conducting a simulation. The fifth and final part
details some finer points which should be considered when constructing models.



3.1 Device Description

A Device Description is an organized manner for describing the characteristics of
a physical component. This description includes definitions of variables which interface
with other components in a system, variables caled states which allow for information
storage, and constitutive relations describing the device behavior.

3.1.1Interface Variables

The interface variables are defined as either potential variables or flow
variables depending on their interaction with the interface variables of other devices
within a system or subsystem. Systems and subsystems are constructed by grouping
the interface variables of one or more devices into sets called nodes and applying
network equations determined by the types of variables attached to the nodes.

All potential variables attached to a node are equated to a potential value
associated with the node. Physical quantities which can be classified as potentials include
voltages, signal levels, rotational speeds, deflections, and pressures. All potentials are
referenced to 0. All potential variables connected to the same node must be defined with
respect to the same system wide reference level. In other words, 0 must mean the same
thing for all of the potentials attached to a given node.

The sum of al flow variables attached to a node is equated to zero. Physical
guantities analogous to flow variables include currents, power flows, torques, forces and
mass flow rates.

3.1.2 Terminals

Terminals provide a mechanism for organizing the interface variables of a device.
In genera, there are two types of terminals. Normal Terminals and Information
Terminals.

A normal terminal has associated with it a flow variable and a potential variable.
Its electrical analog is one of the wiring terminals on an electrical device. A mechanical
anaog is the rotating shaft coupling of a gearbox. The equations for exchanging energy
between devices can be generated through the list of normal terminals connected together
at agiven node.



An information terminal has associated with it only a potential variable. The
potential variable is used to convey knowledge between devices without transferring
energy. Set points, meter readings, and control signals are all examples of energyless data
which can be conveyed through information terminals.

All normal terminals have an associated KCL Group number. A KCL group isthe
smallest subset of a device's terminals such that the sum of the flow variables within the
subset is identically zero for at least one of the possible dynamic configurations of the
device. Normal terminals which can not be associated with aKCL group are given agroup
number of 0. The remaining terminals are assigned the group number of their parent KCL
group.

The KCL Group number is used to detect possible reference frame problems within a
simulation network. A given electrical circuit problem for example, must have at least one
normal terminal with a O group node within a given independent system to ensure the set
of system KCL equations is not singular. Normally this terminal is associated with a one
terminal device with an export potential and import flow which is used to specify the value
of a given reference node potential. This Reference Frame Check is discussed in greater
detail in section 3.2.4.

Some devices may have variable numbers of KCL Groups depending on the
operating point of the device. A simple model of a two termina switch for example,
would have 1 KCL group when the switch is closed (the sum of the currents entering the
switch isidentically zero) and 2 KCL groups when the switch is open (both flow variables
are identically zero). For the purpose of defining the device, the worst case in terms of
creating singular systems should be used. In the switch example, each termina should
have their own KCL group number for atotal of two KCL groups.

3.1.3Variable Direction: Import and Export Variables

The Interface variables can further be classified by whether they are a resource
(Import) or product (Export) of the device description. A device description can be
considered a means for generating export variables based on the values of the import
variables, states, parameters, continuation parameter, and time.

Animport variable is taken as input by the device description. An import variable
can be any interface variable associated with either normal or information terminals. To



ensure a consistent set of equations when several devices are connected together in a
system, the total number of import variables associated with normal terminals must equal
the number of normal terminals

An export variable is explicitly defined and considered a product of the device
description. An export variable can be any interface variable associated with either normal
or information terminals. To ensure a consistent set of equations when several devices are
connected together in a system, the total number of export variables associated with
normal terminals must equal the number of normal terminals.

3.1.4 States

States are variables whose values are stored for a given time for later use. States
can be used for example, to store the constant of integration for adynamic equation. States
can aso be used to store the operating mode for a given device. In general, if the value of
a given variable depends on the previous value of another variable, that other variableis a
state.

3.1.5 Parameters

Parameters are constants which specify characteristics of the device or in other
words, customizes a given device description to represent a given physical device. A
model of aresistor for example, includes a parameter for resistance. This precludes the
requirement to develop a model for every resistor value. We only need construct a generic
resistor model instead of a 10K resistor model, a 22K resistor model, etc.

3.1.6 Constitutive Equations

The constitutive equations are a consistent set of equations for specifying the
values of the states and export variables. In general, the number of constitutive equations
needed is equal to the number of normal terminals plus the number of export variables
associated with information terminals. The total number of import variables associated
with normal terminals and the total number of export variables associated with normal
terminals must independently equal the number of norma terminas. There is no
constraint on the number of import variables associated with information terminals.
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3.1.7 Device Jacobian M atrices

A Device Jacobian Matrix provides the sensitivities (partial derivatives) of the
export variables with respect to the import variables. This implies there is a given
ordering of both the import X, and export X variables:
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The Device Jacobian Matrix is used to generate a consistent set of import variables
which simultaneously satisfy the device constitutive equations along with constraints
imposed by the connections of terminals to nodes. From the device point of view however,
the Jacobian matrix is merely a product that must be computed.

Up to this point, we have not discussed the manner in which the variables are
described. If the variables are represented by real numbers, then each element of the
Jacobian is also areal number. If instead the variables are represented by vectors, then the
Jacobian elements will be matrices.

3.1.8 Device Structural Jacobian Matrix

The Device Structural Jacobian Matrix describes the properties of the elements
of the device Jacobian matrix for a given type of variable representation without actually
providing any values. The following codes can be used to describe the properties of the
matrix elements of the device Jacobian matrix:

Code |Typeof Matrix

0 Zero Matrix (all elements are always zero)

I |dentity Matrix (always the identity matrix)

D Diagona Matrix (always alinear main diagona matrix)

L Linear Matrix (The elements are always constant)

Nonlinear AC Matrix (see Note 3.1.8-1)

Nonlinear Matrix (The elements may not be constants)

clz]| >

Unknown (The dependence is unknown (treat as nonlinear))

Note 3.1.8-1: An AC Maitrix is one for which the constant component of the export
variable depends only on the constant component of the import variable. The other
components of the export variable can not depend on the constant component of the
import variable but are not restricted in any other way.

The device structural Jacobian matrix is useful in developing the algorithm for
generating a consistent set of import variables without having to deal directly with the

potentially much larger device Jacobian matrices. If an iterative solution scheme is used to



develop the consistent set of import variables, the device structural Jacobian matrix
indicates directly which matrix elements must be recalculated for each iteration. (Only the
nonlinear and unknown elements have values which change between iterations)

3.1.9 Continuation Parameter

A system containing one or more nonlinear devices may be difficult to solve with an
iterative method. The region of convergence around the solution may be so small as to
make the probability of success for choosing a starting point for the iterative scheme
amost zero. One method for enlarging the region of convergence is through the use of a
continuation parameter which varies from 0 to 1. When the continuation parameter
has value 1, the export variables are developed using the normal nonlinear constitutive
eguations. When the continuation parameter has value 0 however, the export variables are
developed using a linear set of constitutive equations. As the continuation parameter
increases from O to 1, the export variables traverse a continuous path from the linear
solution to the nonlinear solution. One common method for generating such a dependence
on a continuation parameter a is:

F(X,a) =aF,(X) + (1 - a)F,(X)

where F,(X) is the nonlinear function for generating the export variables, F,(X) is the
linear function approximation, and F(X,a) is the function for determining the export
variables for intermediate values of a. Section 3.4.2 describes in detaill continuation
parameters in relation to the Newton-Raphson method.

3.1.10 Discontinuity Time Prediction

If the variables are described as a waveform over a given time interval [tt,]
knowledge of the time of discontinuities can prove useful to the algorithm which generates
the consistent set of import variables. The accuracy of a vector description of a waveform
often deteriorates greatly if there is a discontinuity during the time interval. Varying t;
such that it falls on a discontinuity will often improve the accuracy of the waveform
representation.  For this reason, each device has the opportunity to recommend a
recalculation time for the current interval. Normally, the system would use the minimum
recommended recalculation time offered by any of the devices to recompute the time
interval.
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3.2 Network Description

A network is composed of a system of devices and subsystems whose terminals
are interconnected at nodes. The network isa closed system having no terminals defined
for any of itsnodes. A subsystem isasystem having terminals defined for at |east one of
its nodes and therefore can not be solved independently of other devices or subsystems.

3.2.1 Nodes

A node connects together one or more terminas from one or more devices. The
nodal connections are the means by which devices are combined to form systems (both
networks and subsystems). The nodes provide the association of device import and export
variables with system variables through nodal equations. Each node is assigned a
serial number for identifying it from the other nodes. There are two types of Nodes:
Normal Nodes and Information Nodes.

3.2.1.1 Normal Nodes

A Normal Node has at least one normal terminal attached to it. Information
terminals can be associated with the node as long as none of the information terminal
potentials are defined as an export variable. A normal node has associated with it a node
potential as well as a Kirchhoff Current Law (KCL) equation. The number of normal
nodesis designated by n,,.

In a subsystem, a normal node can also have associated with it a termina for
connecting with other subsystems and devices. This terminal can be either a normal
terminal having an associated terminal potential and flow variable or an information
terminal having only an export potential. (import and export refer here to the direction
relative to the defining subsystem which is opposite to the normal definition which is
relative to the components of the subsystem). The total number of normal node normal
terminals defined for a subsystem is designated n,,,,. For any given subystem the number
of normal node terminal export variables and import variables must both independently
equal n,,,. The total number of normal node information terminals is designated n,,;.

3.2.1.2 Information Nodes

AnInformation Node hasonly information terminals attached to it. Furthermore,
one and only one of the terminal potential variables must be an export variable. Only a
node potentia is associated with an information node. Information nodes work in the
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same manner as hooking up stereo componenents. you can hook up as many inputs
(import variables) as you want to any given output (export variable), but should never
hook up two or more outputs together. The number of information nodes is designated by
n,.

As an option for subsystems, an information node can have associated with it an
information terminal for connecting with other subsystems. Since the meanings of import
and export are once again reversed for thisterminal, no other export potentials from other
devices or subsystems may be attached to the node if the information terminal potentia is
an import variable. If theinformation terminal potential is an export variable, exactly one
other export potential from other devices or subsystems may be attached to the node. The
total number of information node information terminals is designated n;;;.

3.2.2 System Variables

System variables comprise the minimum set of variables from which al of the
device import and export variables can be derived from. The set of system variables is
composed of node potentials as well as all device import flow variables and normal node
normal terminal export flow variables. For a subsystem, the node termina import
variables are assumed to be provided by the encompassing system or subsystem and are
not considered system variables.

3.2.2.1 Node Potentials

All of the node potentials of the normal and information nodes are system variables
which must be solved for. Hencethere are atotal of n, = n, + n; node potentials.

3.2.2.2 System Flow Variables

All of the Import Flow Variables of the various devices making up the system as
well as the export flow variables of the normal node terminals are system variables. The
number of system flow variablesis designated by n;.

3.2.3 System Equations
3.2.3.1 Kirchhoff Current Law Equations

Kirchhoff’s current law states the sum of the flow variables entering a node is equal
to zero. For a given norma node or norma terminal node, this law is expressed by
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generating a list of the terminals of the various devices and subsystems attached to the
node. The number of Kirchhoff Current Law equations is equal to the number of normal
nodesn,,.

n
f0=2>1;=0
i=1
where
f.0 KCL Equation for node j (Should Equal Zero)
n, Number of normal terminals attached to node

i Flow Variable associated with ith normal terminal attached to node |

3.2.3.2 Potential Difference Equations

A Potential Difference Equation is created for each of the export potential
variables of the various devices and other subsystems and for each of the import potential
variables of the node terminals. This equation merely states the difference between the
node potential and the potential variable is zero.  This equation is expressed by
generating a list of the terminals of the various devices and subsystems attached to the
node having an export potential variable. Since one and only one export information
potential can be assigned to an information node and can never be attached to a normal
node, the number of potential equations due to export information potentials is simply n;.
The requirement for a device to have equa number of import and export variables
associated with normal terminals forces the number of export normal potentials to be n;.
Hence the total number of potential equationsisn, = n; + n.

f,0=V,-V; =0
where
fi0 Potential Difference Equation for node j export potential variable i
(Should Equal Zero)
\% Nodej Potential
Vi ith export potential variable associated with node .
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3.233R,,and G,

One method for preventing linear dependences among the system equations is to
modify the equations to include an extra term corresponding to either a small conductance
G, to the ground potential for KCL equations or a small series resistance R,,,;, for the
potential difference equations. The KCL equation is how given by:

i
f;0 =GunV, +i§1|ji =0

The potentia difference equation is similarly modified:
0=V, -V, -R;,l; =0

The goal in using G, and R, is to reduce the condition number of the system
Jacobian matrix to the point where the system can reliably be solved (A singular
matrix has an infinite condition number). G, and R, can aso add fictitious dynamics
to the system and thereby lead the simulation to produce incorrect results. Hence if used,
G, and R, should be large enough to bring the condition number down to a reasonable
level, but small enough to prevent their inclusion from having appreciable effect on the
simulation results.

In generd, the use of G, and R, should be avoided for these reasons:

1. G,,ad R, ae fictitious elements. If either is significant, they should be
explicitly included as adevice.

2. Theindiscriminite use of G,,, and R;, adds to the complexity of the system
and decreases the degree to which the system can be reduced into smaller blocks.
In other words the inclusion of G, and R, may greatly increase the computation
time.

Gin and R, are included in WAVESIM for these reasons

1. G,,andR,, can be selectively specified for individual nodes. If asimulation
fails to converge for one reason or another, G,,, and R;,, can be employed to find
the part of the system experiencing difficulties. G, and R,, are excellent
debugging tools.
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2.  Since G, effectively connects the node to the ground potential, G,,,, can be
used to ensure all of the nodes have the same potentia reference and ensure there
are no linear dependent KCL equations.



3.2.4 Reference Frame Testing

If a given set of a system’s norma nodes can be found such that all terminals
attached to any of its nodes have nonzero KCL groups and such that if a terminal is
attached to one of the set’s nodes, then all of remaining terminals of the parent KCL group
are also attached to one of the nodes of the set, then there exists the possibility of asingular
system due to the linear dependence of the KCL equations for the set of normal nodes.

If G,,, IS non-zero for a node, it should be considered a terminal with a 0 KCL
Group. If G, iszero, it should be ignored.

Testing for a possible singular system can be accomplished with the following
algorithm:

1. Set adl the normal nodeci rcui t _group_i ndi cators to 0.
Setthecircuit_group_counter to0
Setthecircuit_group_singular _flagtoO

2. Start with the first normal node havingaOci r cui t _gr oup_i ndi cat or
If none can be found then algorithm is complete.
Increment ci r cui t _group_counter.

3. Changethecircuit _group_i ndi cat or of the nodeto the

circuit_group_counter.

4. For each terminal attached to the node:

4a. If the KCL group number is zero, set the
circuit_group_singular_flagtol.

4b. If the KCL group number is nonzero, loop through each normal
terminal of the device. If the terminal belongs to the same
KCL group and the node the terminal is attached to has a
Ocircuit_group_i ndi cat or, then set the node
circuit_group_indi cat or tothe negative

of theci rcuit_group_counter.

5. Search all of the nodes for anegativeci r cui t _gr oup_i ndi cat or
If none can be found and the ci rcui t _group_si ngul ar_f 1 ag iszero
Warn user that a singular system may exist with the group nodes.
If none can be found then go to step 2
If oneisfound, then go to step 3
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Setting a proper reference for each such set of system nodes can be accomplished by
attaching to one of the nodes a one terminal device having the following characteristics:

3.2.4.1 Reference Device

I nterface Variables

Terminal Potential Variable Flow Variable (KCL Grp) Type
Ref V (export) | (import) (0) Normal
Parameters
\/ Reference Potential Level
Equations

V = Vi«

Device Structural Jacobian

Jos = [0]

Device Jacobian

I =10]

Notes

Most conventional circuit simulations define a reference node for which a potential
is defined and the KCL equation is not written. Adding this reference device to a node
effectively converts that node to areference node in the usual senses. Whileit is true that
the KCL equation and an additional Potential Difference equation are still written for this
reference node, each is part of a one element block. The potential difference equation can
be solved before the simulation starts since it does not depend on any of the system
variables. The flow variable on the other hand, only appears in the KCL equation of the
one node and thus can be solved after al the other system variables have been found. In
fact, the flow variable should normally equal zero if the rest of the circuit is indeed
linearly dependent.

As a convenience to the user, WAVESIM automatically attaches a reference device
with V,4 = 0 to the node with serial number O if that node is used.
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3.2.5 System Reduction

The previous sections detail a method for generating a full set of system variables
and system equations. The total number of system variable equals ng = n,, + n; + n; which
also equals the number of system equations. For even a small system the algebraic order
ng can become quite large. For this reason, elminating system variables and equations
through system reduction is desirable. The primary tool for performing system reduction
isthe system structural Jacobian.

3.2.5.1 System Structural Jacobian

The System Structural Jacobian facilitates the reduction of the algebraic order
of the system by showing the nature of the dependence of system equations to each of the
system variables. The System Structural Jacobian is constructed by combining elements
of the device structural Jacobian matrices according to the arithmetic of structural
Jacobian elements. The types of elementsin the system structural Jacobian is given by:

Code |Typeof Matrix

0 Zero Matrix (all elements are always zero)

I |dentity Matrix (always the identity matrix)

D Diagona Matrix (always alinear main diagona matrix)

L Linear Matrix (The elements are always constant)

A Nonlinear AC Matrix (see Note 3.2.5.1-1)

N Nonlinear Matrix (The elements may not be constants)

U Unknown (The dependence is unknown (treat as nonlinear))

Note 3.2.5.1-1: An AC Matrix is one for which the constant component of the export
variable depends only on the constant component of the import variable. The other
components of the export variable can not depend on the constant component of the
import variable but are not restricted in any other way.

The addition and subtraction operators for the structural Jacobian elements is a
function of the manner in which the system variables are represented. For all of the
methods used in this thesis, the following definitions apply:
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| +1=D
l-1=0
| +0=1
-1+0=D
-1-1=D
tntm=xmz=n=n(n=m, n#l)
U>N>A>L>D>1>0

Note, the Identity Code I, is not strictly necessary and if eliminated simplifies the
addition and subtraction operators to:

tntm=+mz=n=n(n=m)

Before the system structural jacobain can be constructed, the system variables and
equations must be ordered. Thefirst n, variables are the node potentials of the normal
and information nodes arranged in the order of the node serial numbers. The next n;
variables are the import flow variables ordered first by device then by device terminal.
Thefirst n, equations conform to the Kirchhoff Current Law equations for the normal
nodes arranged in order of the node serial numbers. The remaining n, equations are the
potential equations for the export potentials ordered first by the node serial number they
are attached to, then by the order of the devices attached to the node, and finally by the
order of the terminalsin the device.

The system structural Jacobian is constructed in two parts after being initialized to
contain only 0. First, a Kirchhoff Current Law equation is generated for each normal
node. The normal terminals of the normal nodes are examined one at atime. If the flow
variable is an import variable, it is also a system variable and an | is added to the
corresponding element of the system Jacobian matrix. If the flow variable is an export
variable, its corresponding row of the device structural Jacobian matrix is extracted. The
columns of the device structural matrix row correspond to the device import variables.
All of the device import variables can be associated to either a node potential (one of the
first n, columns of the system structural Jacobian) or to one of the remaining n; import
flow variable columns. Hence it is quite easy to locate to which column each element of
the device structural Jacobian row must be added. If G, is non-zero for the node, a D
codeis added to the column corresponding to the node potential.
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The remaining n, rows of the system structural Jacobian matrix are constructed by
examining each node one at atime. If the node has an export potential associated with it.
An | is added to the corresponding node potential column and potential equation row
element (unless of course the node is a reference node and does not have a column
associated with its potential). The row of the device structural Jacobian matrix
corresponding to the export potential is then extracted. In exactly the same manner as
described above for the export flow variables, the columns of the system structura
Jacobian matrix are correlated to the columns of the device structural Jacobian matrix.
Once correlated, the elements of the device structural Jacobian row are subtracted from
the appropriate elements of the system structural Jacobian matrix. If R, iS hon-zero for
the node and the terminal having the export potential has an import flow variable, then a
D is added to the column corresponding to the import flow flow variable. If R, is
non-zero for the node and the terminal having the export potential has an export flow
variable, then a D is multiplied by the elements of the corresponding row of the device
structural Jacobian matrix before being added to the corresponding column in the system
structural Jacobian matrix.

Once the structural Jacobian matrix has been constructed it can be examined to
ensure there are no glaring problems such as arow or column containing only O elements.
If a row or column contains only 0 elements, the system is ill-posed and can not be
solved.

3.2.5.2 Blocks

The primary reason for constructing the system structural Jacobian matrix is to
break down the system of equations and system variables into smaller blocks which can
be sequentially solved instead of solving the entire system at once. A block B, is defined
as n, system variables and n,; equations which only depend on system variables of the
present block and previous blocks in the sequence. A block of size n,; is identified by
finding n, rows in the system structural Jacobian matrix that have not already been
alocated to a block and have exactly n,; columns containing non-0 elements. Of the
many combinations of blocks which can be found for a system, the best combination
contains the largest number of small blocks. Hereisan agorithm for finding the blocks:

1. Create alist for each row containing the number of unallocated non-0 entries
inthat row. (Initially all the rows and columns are unall ocated)
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2. Examine the list for rows having only 1 unallocated non-0O entries. Create a
block for each of these rows and their associated columns. Mark the rows and
columns as allocated.

3. Updatethelist of unallocated non-0 entries in each row.
4.  Continue steps 2 and 3 until no more single rows can be alocated.

5.  Examine the list for two rows only having unalocated non-O entries in the
same two columns. Create a block for each pair of rows and their associated
columns. Mark the rows and columns as allocated.

6. Updatethelist of unallocated non-0 entriesin each row.

7. Repeat steps 2-6 until no more single row and double row blocks can be
identified.
8. Examine the list for three rows only having unallocated non-0 entries in the

same three columns. Create a block for each set of three rows and their
associated columns. Mark the rows and columns as allocated.

9. Updatethelist of unallocated non-0 entries in each row.
10. Repeat steps 2-9 until no more blocks of up to size 3 can be identified.

11. Continue the above algorithm until al of the rows and columns have been
allocated. Remember it is necessary to go back and attempt to identify
smaller sized blocks after discovering a larger block since the removal of a
column could allow the identification of a new smaller block.

The order of identifying blocksis very important because they must be solved in the
same order. Each block contains the same number of system variables and system
eguations. The equations only depend on system variables determined from the present
and previous blocks. Hence the simulation problem becomes an issue of solving
sequences of relatively small systems of equations described by blocks.

3.2.6 Reduced System

The reduced system consists of the sequence of blocks which when solved, provide
the solution for al the system variables. Solving each of the blocks can be done a number
of ways. Most schemes start with an initial guess for the system variables and generate
corrections to the guesses until all of the system equations for that block are satisfied.
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Generating the corrections is normally done through the use of a block Jacobian matrix
which can be constructed in much the same manner as the system structural Jacobian. |f
the block structural Jacobian does not contain any A, N or U elements, the block Jacobian
can be inverted and multiplied by the system equation errors to provide the required
corrections. If there are any nonlinearities, this scheme can be performed several times
until the system equation errors are close to zero. This method is commonly referred to as
the Newton-Raphson method and if the initial guess is close enough to the solution, the
method converges quadratically. This method is described in much more detail in section
3.4.1.

Relaxation techniques can also be used to calculate the system variables. Relaxation
techniques start with an initial guess for all of the system variables and update each
variable one at a time by solving a single system equation by assuming all of the other
variables are constant. Typically, one system equation is assigned the task of solving for a
particular system variable. With careful thought as to the assignment of variables to
eguations, it is often possible for such a system to converge to a solution. Common
relaxation techniques are the Gauss-Seidel and Gauss-Jacobi methods.
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3.3 Waveforms

Up to this point, the development of the simulation structure has been independent of
the manner in which variables are actually described. The simplest and most commonly
used method for representing variables is through a single real number representing the
value of avariable at a specific time. For static ssimulations where the problem is to obtain
the steady state solution for the system, this method works very well. Appendix C and
Appendix D demonstrate this procedure for the classic load flow problems. For dynamic
simulations however, some knowledge as to the time history of the variables is needed to
calculate derivatives and integrals. A dynamic simulation is implemented as a series of
static ssimulations where the dynamics are represented by functions of the time increment
and state variables. The various integration techniques for this type of simulation differ
only in the interpolation scheme used to approximate the variables between successive static
simulations. The time increment between static ssmulations must be carefully controlled to
ensure the interpolation scheme has enough accuracy for numerical stability. Integration in
this manner requires careful control of the time increment to ensure the interpolation
scheme is accurate enough to ensure numerical stability along with an accurate solution.

Another approach to representing variables isthe waveform. This method employs a
vector of coefficients to continuously describe the time domain value of the variable over
some time interval [t t;]. The type of the waveform determines how the coefficients are
interpreted to generate the time domain values. Possible types include Data Series, Fourier
Series, Legendre Series, Polynomial Series and Legendre Series. The principal advantages
of using waveforms over discrete pointsinclude:

1 Interpolation is not generally required to determine intermediate points. The
value of avariable can readably be determined for any time.

2. The numerical stability of Integration and Differentiation techniques do not
have to depend on the time step control since integration and differentiation
become waveform operators on an equal level to al other operators. Time step
control becomes only an issue of numerical accuracy and not of numerical
stability.

3. Certain operations may be easier to perform with one waveform type. The
ability to efficiently convert a waveform from one type to another type and
back again allows one to use the most efficient waveform type in the
calculations of a given operator.
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3.3.1 Waveform Definition

A waveform approximates the instantaneous value of a variable over some time
interval. The elements of information contained within a waveform must as a minimum
include:

The name of the waveform

The beginning and ending times of the interval (t,t,)

1

2

3. An Array of Coefficients representing the waveform (c)
4 The number of coefficientsin the Coefficient Array (n)
5

A waveform type indicator.

The waveform type indicator identifies how the coefficients should be
interpreted when operations are performed on the waveform. Here is an example of a C
structure defining a Waveform:

typedef struct Waveform

char *nanme; [/* character string of the nane

of the variable */
time of the beginning of the interval */
tinme of the end of the interval */

doubl e t0;
doubl e t1;

~ Y~ Y
* Ok 3k 3k X X

voi d *c; array of coefficients */
| ong n; nunber of elenents in the array */
| ong type; wavef orm type indicator */

| ong version; Version of this waveform */

struct Waveform*next; /[/* pointer for forward
linked lists */

struct Waveform*last; /* pointer for backwards
[inked lists */

struct Jacobian *jnum /* pointer to linked |ist of
j acobi ans where this waveform
is the nunmerator */

struct Jacobian *jden; /* pointer to linked |ist of
j acobi ans where this waveform
i s the denomi nator */

V\}AVEFORM

The above definition also includes the following optional information:

6. A Version Number to record a change in the waveform’ s properties.

7 An Address Pointer to the waveform representing the previous time interval.
8. An Address Pointer to the waveform representing the following time interval.
9

An Address Pointer to alinked list of Jacobian Structures.
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The waveform address pointers allow one to construct alinked list of waveformsto
describe the time history of a variable over a number of time intervals. The Jacobian
structure aswell astheversion number will be described in section 3.3.3.

Note the waveform coefficients are declared to be of type void. Thisisdoneto allow
for the coefficients to be abstract data representations in themselves. Normally the
waveform coefficients would be double precision floating point numbers, but it should also
be possible to incorporate other types of data. It may be advantageous for example, to
represent the coefficients with complex numbers. In this case, each element in the
coefficient array would be a structure holding double precision floating point numbers
corresponding to the real and imaginary parts (Or magnitude and phase angle) of the
complex number.



3.3.2 Waveform Operators

Waveform Operators are functions which act on waveform arguments to generate
new waveforms, or provide some information about the waveform arguments. The types
of functions can be broken down into several groups:

1. Arithmetic Operators

2 Trigonometric/Exponential Operators
3 Switching Operators

4, Integral/Differential Operators

5 Waveform Content

6. Special Functions

3.3.2.1 Arithmetic Operators

The arithmetic operators are the customary addition, subtraction, multiplication,
division, and assignment operators usually associated with floating point arithmetic. The
assignment operator is a bit more complex since it must incorporate waveform type and
number of coefficient conversions.

3.3.2.2 Trigonometric/Exponential Operators

The Trigonometric/Exponential operators include most of the transcendental
functions used in engineering. Examples include sine, cosine, tangent, logarithms,
exponentials, as well as the inverse functions. Error handling can become quite complex
since severa of these operators may be undefined at one or more points within the
argument waveform. These operators are usually handled by converting the arguments to
a series of data points, performing the operation point by point, and then converting back
to the appropriate waveform type.

3.3.2.3 Switching Operators

Switching Operators are operators producing waveforms which themselves or one
of their derivatives are discontinuous. Examples include the absolute value function, the
sign function and the step function. The typical method for calculating these functions is
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to determine the discontinuity points and use integration to create a characteristic function
series solution (e.g. Legendre Series or Chebyshev Series) for the result. The series
solution is then converted to the appropriate waveform type.

3.3.2.4 Integral/Differential Operators

One of the key advantages of using waveforms in dynamic simulations is that
integration and differentiation become very simple operators where the stability of a
numerical integration scheme is generally not an issue. For many waveform types, the
integration operator is a linear matrix operation with bounded coefficients. If the
argument waveform has bounded coefficients, the returned waveform will also be
bounded. Of course, numerical stability does not assure numerical accuracy. Because the
integration operator typically generates some truncation error, the returned waveform can
still contain considerable errors.

3.3.2.5 Waveform Content

The significance of the Truncation Error of a waveform can be estimated by
calculating the waveform content of its higher order term. The waveform content of a
term is defined as the magnitude of a coefficient divided by the square root of the sum of
the squares of al the coefficients. Normally, one expects the higher order terms of an
orthogonal series representation to progressively have smaller and smaller waveform
contents. Hence if the last few terms have values below a preset threshold, the truncation
error can normally be assumed negligible.

Accurate truncation error estimation is still a difficult and currently unsolved
research topic. The waveform content method is a practical method but should not be
taken as the last word on the subject.

3.3.2.6 Special Operators

Several specia operators unigue to waveforms should also be developed. One very
useful operator returns the time of zero crossing of the waveform. Another returns the
value and time of every local minimum and maximum of a waveform.

The smoothing operator is one method for reducing the waveform content of
higher order coefficients. A waveform is smoothed by returning the local average of the
waveform over some prespecified time increment. Smoothing eliminates discontinuities
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in a waveform and its derivatives. Since discontinuities tend to amplify the waveform
content of the higher order terms, removing the discontinuities should reduce the higher
order term waveform content.
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3.3.3 Jacobians

A Jacobian matrix contains the partial derivatives of the coefficients of one
waveform with respect to another waveform. Here is a sample C structure to define a
Jacobian:

typedef struct Jacobi an

struct Wavef orm *num /* address of waveformin the
nunerat or of the parti al
derivatives */

struct Wavef orm *den; /* address of waveformin the
denom nator of the parti al
derivatives */

| ong version; /* Version nunber of the
jacobian matrix */
| ong num ver si on; /* Version nbr of
numer at or Waveform */
| ong den_versi on; /* Version nbr of
denom nat or Waveform */
void **j; /* array of jacobian elenents

The first rowindex is for
an array of pointers whose
elements are arrays with
the columindex */

char sj; /* Structural Jacobi an Code */

struct Jacobian *next; [/* address for |inked |ist
of Jacobi ans */

}
JACOBI AN,

Jacobians are used in the process of solving simultaneous systems of waveform
equations through relaxation methods or through the Newton-Raphson Method. The
purpose of num ver si on and den_ver si on is to record which versions of the numerator
and denominator waveforms the jacobian was calculated for. The element ver si on is used
when several jacobians are combined and it is necessary to determine whether the
combined matrix must be recal cul ated.

In general, al operations defined for awaveform should also generate the jacobian of
the results with respect to the arguments. Through the use of the chain rule, the jacobian
matrix of the export variables of a device with respect to the device import variables can be
determined.

The structural jacobian code indicates the dependence and structure of the
jacobian matrix. Hereisalist of the codes:
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Code |Typeof Matrix

0 Zero Matrix (all elements are always zero)

I |dentity Matrix (always the identity matrix)

D Diagona Matrix (always alinear main diagona matrix)

L Linear Matrix (The elements are always constant)
N Nonlinear Matrix (The elements may not be constants)
U Unknown (The dependence is unknown (treat as nonlinear))

The structural jacobian code along with the version numbers determines whether or
not a jacobian matrix needs to be recalcuated. If the structural jacobian is of type O, I, D,
or L then the jacobian need not be reconstructed if the there is a version mismatch between
the waveform version and the jacobian version. If the structural jacobian of type N or U,
and there is a mismatch between the version numbers of the jacobian and the waveforms,
then the jacobian elements must be recalculated. After every recalculation, the version
numbers are updated. In this manner, only jacobian matrices with changing coefficients
are ever recalcul ated.

Technically, the structural jacobian codes depend on the waveform type used. Inthis
thesis however, all of the waveform types produce the same structural jacobian codes.

3.3.3.1 Jacobian Operators

Several operators for jacobian objects will prove useful in developing a simulation
environment. These operatorsinclude:

1. Addition and Subtraction

2. | dentity and Zero Jacobian generators

3. Multiplication by a constant

4, Multiplication of two jacobians

5. Multiplication of ajacobian by awaveform
6. Inverting ajacobian

If the waveform is described by an array of double precision floating point numbers,
the Jacobian coefficients can also be defined to be an array of double precision floating
point numbers. In this case, the above operations employ standard matrix manipul ations.
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3.3.4 Waveform Examples

While the possibilities of waveform definitions is endless, this thesis will concentrate
on the following waveform types:

Waveform Type Code

Undefined 0
Data Series 1
Fourier Series 2
Legendre Series 3
Polynomials 4
Matlab Polynomials 5

Chebyshev Series 6

The code in the above table refers to the value of element t ype in the WAVEFORM
structure. Appendix E describes these waveforms and their arithmetic in great detail.
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3.4 Conducting the Simulation

Once the physical system has been specified by device descriptions and network
eguations, the solution for all of the system variables can be determined in several ways.
The method used in this thesis is the Newton-Raphson method with continuation
parameters.

3.4.1 Basic Newton-Raphson Algorithm

The Newton-Raphson method solves a system of nonlinear equations F(x,u) =0,
FO O ", for the system variables x (11 " with system input variables u [11 "by first
linearizing the system of equations about a given guess for the solution x* then solving the
linear system to produce a new guess x**. This procedure is repeated until F(x*,u) =0 is
satisfied within a given tolerance. The sequence of points x* starting with k = 0 is called
the solution trajectory for x°. A converging solution trajectory eventually converges to a
solution while a diverging solution trajectory does not.

F(x,u) is linearized by taking the Taylor series expansion about the point x*:
F(x,u) = F(x*u) +I(x*, u)x, + O(x [X) =0
X =X +x,
where the Jacobian matrix J(x,,u) is defined by:

_ oF (x°,u)

0
J(x",u) o

Assuming the error O(xex) is negligible and the Jacobian can be inverted, the
correction x, for agiven guess x* is given by the linear approximation:
X, = =J7H(x*, u)x"

The correction is applied to x* to produce x***, the value of x for the next iteration:

Xk+1 — Xk + XA

Around each solution of F(x,u) = 0 for which the Newton-Raphson method reliably
converges, aregion exists such that if atrgectory entersthat region, it will never leave and
eventually converge to the solution. The size of thislocal convergence region depends on
the nonlinearity of the system. For purely linear systems, this region encompasses the
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entire n space. If the intitial guess falls within the local convergence region, the
Newton-Raphson method will by definition converge. If the initial guess falls outside the
local convergence region, one of several things can happen. First, the solution trgjectory
could enter the local convergence region of a solution and converge on a solution. Second,
the Newton-Raphson method could fail due to a singular Jacobian. Third, the trajectory
could diverge and tend to infinity. Fourth, the trgjectory could become cyclic where
x¥*9 = x* for k sufficiently large enough. Finally, the trajectory could enter a chaotic region
in which there is no solution but from which the trgjectory never leaves and is not cyclic.

As an example, define F(x,u) to be the following 1x1 system:
F(x,u)=x>-x

Figure 3.4.1-1: F(x,u) = x*-x

10

Regions
1 4 2 5 3

F(x)=x3-x

Region 1:
Region 2:
Region 3:
5l Region 4:

Region 5: -

BRROR

2
5x*=1 ax2=1

-10

The Jacobian matrix is:
J=[3x*-1]
The recursion formulafor x*** is given by:

k3 _ Kk
Xk+1:Xk_(X) - X
3(xM°-1
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There are three solutions for this system and their local convergence regions are
given by:

Root L ocal Convergence Region

3
vt V<V
5 5
X3:+1 — 1 0
“<x’<
'\/3 *

In two other regions, the solution trajectory jumps to one of the local convergence
regions after one iteration:

Root Convergence Region

0.46560 < x° < -\/ % =0.57735

_.\/ % = -0.57735 < x° < —0.46560

In two other regions, the solution trgectory may jump to one of the local
convergence regions after several iterationsor fail to converge:

Variable Behavior Region

.\/ é = 0.44721 < X < 0.46560

-0.46560 < x° < —-\/ é = -0.44721

On the boundaries for the above regions, the Newton-Raphson method fails:
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x° Failure Mode

v 1 |Singular Jacobian
+ _
V3

+0.46560 |Singular Jacobian

v 1 |Cyclic Trajectory
+ —
V5

In the above analysis, no constraints were made in the speed of convergence or on
the size of x. If |x* > 1 the speed of convergence will be very slow since x***=2x* and
the number of iterations| required will be abouit:

_log(Ix]) _

og(L5) ~ 568109 D

Furthermore, most machines have a limit as to the largest number which can be
represented. If an iteration causes x to exceed this number in magnitude, a floating point
overflow error will typically be generated. This phenomenais known as Newton Overflow
and has the effect of reducing the size of the convergence regions. For example, if x is
known to be bounded by the interval [-10 10], then x° should be restricted to the following
regions:

Root Conver gence Region
X =-1 -10 < x° < -0.58904
0.46560 < x° < 0.56675
X, =0 —_— —_—
2 —-\/ é = 044721 <X° < -\/ é = 0.44721
Xg=+1 -0.56675 < x° < —0.46560
0.58904 < x° < 10.0
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3.4.2 Continuation Methods with Newton-Raphson

The previous discussion indicates the need for careful selection of the initial guess x°.
The use of a continuation parameter in so caled homotopy methods is one of the many
ways for attempting to generate x° within the convergence region of the desired solution.
In general, a function H(x,u,a0) =0 is generated such that H(x,u,1l) = F(x,u) and
H(x,u,0) = G(x,u) where G(x,u) is alinear function in x. One common method of creating
H(x,u,a) is:

H(x,u,a) =aF(x,u)+(1-a)G(x,u)

The problem now is to develop the linear function G(x,u). There are severd
approaches which can be taken for each row G;(x,u):

1. Linearize about a known operating point. This is equivelent to providing an
initial guess for each of the variables and using the Newton-Raphson method
directly.

2.  Use aleast squares fit of a linear system over a known operating region of
Fi(x,u).

3. Select G(x,u) such that the solution for H(x,u,0) = 0 is most likely to be within
the convergence region of F(x,u).

Once H(x,u,a) has been constructed, it can be used in several ways:

1. Start with a=0 and obtain a solution to the linear system, then progressively
increment alpha by small amounts and solve the nonlinear system until a=1. The
rational is to employ the unbounded local region of convergence of the linear system
to move the initial guess into the local region of convergence for the next nonlinear
system formed by incrementing a. Asa isincremented, the solution for the previous
value of a is assumed to be within the local region of convergence for the present
value of apha Appendix B demonstrates this may not aways happen due to
bifurcations of solutions as a is incremented.

2. Start with a=1 and attempt to obtain a solution to the nonlinear solution. If the
trajectory has not converged after n,,, iterations, decrement a and attempt to find a
solution. Progressively decrement a until a solution is obtained, then increment o
using the solution of the previous value for a for the initial guess. This procedure
assumes the local convergence region for a given solution will increase as a is
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decremented. Eventually the local convergence region should grow large enough to
encompass even a poor guess for the solution. This procedure has the advantage over
the previous method in that it may avoid bifurcations which occur between 0 and the
minimum value for a used. However, the number of iterationsfor a may belarger.

Note that the value for n.,, as well as the convergence criteria may be a function of
a. There is no reason to obtain a highly accurate solution for intermediate values of a
since the only purpose is to move the initial guess for the next a iteration into the new
local region of convergence. Only when a=1 should the convergence criteria be enforced
for obtaining ahighly accurate solution.

-76 -



3.4.3 Simulation Algorithm

The ssimulation algorithm employed by WAVESIM is conducted totally within the
MATLAB environment and is composed of four parts. The first part initializes all of the
simulation parameters. The second part performs the time increment control and has
embedded with in it the third part which is the sequential solving of each of the blocks.
The final part is composed mostly of plotting and storing the results of the simulation.

Figure 3.4.3-1: Smulation Flowchart
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3.4.3.1 System Initialization

A number of parameters and arrays need initialization before the simulation can
commence. These parameters and arrays are:

n Initial number of waveform coefficients

N Actual number of waveform coefficients used
W ype Waveform type indicator

t0 Beginning time of simulation

t1 Ending time of ssimulation

sb n mn Minimum number of coefficientsto use
sb_n_max Maximum number of coefficientsto use
sb_n_data Number of points per waveform for plots

sb dt _init Initial time increment

sb_dt_optinmum Optimum time increment

sb_dt_nin Minimum time increment

sb_dt _max Maximum time increment

sbh_dt _ave Minimum time of interest (Averaging interval)

Break Points are user specified times for which waveform interval boundaries are
forced to occur. Break Points are completely optional and their inclusion is up to the
system modeler.

sb_bp Array of Break Points

sb_bp_nbr Number of break points

sys_node_seri al Array of Node Serial Numbers

sys_node_nane Array of Node Names

sb_al pha_i nit Initial Value of continuation parameter apha for nonlinear
blocks

sb_dal pha_ini t Initial Vaue of alphaincrement

sb_dal pha_nin Minimum alphaincrement

sb_dal pha_max Maximum al phaincrement

sys_Grin Array of Gmin valuesfor all of the nodes

sys_Rnin Array of Rmin values for al of the nodes

The index for sys_Grin and sys_Rmi n are the node numbers of the nodes they
apply to.
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sb_check_eqn_err =0 for don’t check equation error
= 1 for checking equation error
sb_check_var _err =0 for don’t check max variable correction
= 1 for checking max variable correction

sys_kcl _err Array of maximum KCL errorsfor all nodes
sys_pot _err Array of maximum Potential Differences for al nodes
sys_nd_err Array of max corrections to Node Potentials for all nodes
sys_fv_err Array of max corrections to Flow Variablesfor all nodes
sb_i_kcl _err Multiplier for maximum KCL error

for alphaless than 1
sb_i _pot_err Multiplier for maximum Potential Difference

for alphaless than 1
sb_i _nd_err Multiplier for max correction to node potential

for alphaless than 1
sb_i fv_ err Multiplier for max correction to flow variable

for alphaless than 1

The index for the above eight arrays are the node numbers of the nodes they apply

to.
sb_maxcnt Maximum number of iterationsfor alpha=1
sb_i _maxcnt Maximum number of iterationsfor alpha< 1
sb_div_start_cnt Number of iterations to skip before checking
for divergence
sb_div_max_cnt Maximum number of diverging iterations before
assume system isdiverging
sb_i_div_err Multiplier of errors for ignoring diverging check
sbh_max_wc Maximum waveform content of awaveform
sb_nbr_wc Number of coefficients to apply waveform content to
sb_mlt_we Multiplier to sb_max_wc for decrementing N
sys_pot _scal e Array of Scaling factors for node potentials
sys_flow_ scal e Array of Scaling factors for flows attached to nodes
The index for sys_pot _scal e and sys_fl ow _scal e are the node numbers of the
nodes they apply to.
dev_par _nane Device parameter arrays. nane is the device name
dev_sO0_nane Device state initial value array:

nane isthe device name
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i var _nd_nbr

ivart_nd_nbr

i var_fv_name

ivart _fv_nane

his t

his N

hi s_col

his_nd_nbr

his fv_nane

his_s nane

bl k_nbr_nrow
bl k_nbr_nco

bl k_nbr_row sys
bl k_nbr_col _sys

bl k_nbr_linear flag

Initial guesses for node potentials:
nbr isthe node serial number
Waveform type for initial guess
nbr isthe node serial number
Initial guess for flow variables:
name isthe variable name
Waveform type for initial guess
name isthe variable name

Matrix of time increment end points
First row is beginning of intervals
Second row is end of intervals
Columns are waveform interval index

Vector of number of coefficients in waveforms for each
waveform interval

The waveform interval index. After smulation this equals
the number of columnsin history arrays

Matrix of Node Potential waveforms. Each column
corresponds to the waveform for the node potential over a
given waveforminterval. nbr isthe node serial number

Matrix of Import Flow Variable waveforms. Each column
corresponds to the waveform for the import flow variable
over agiven waveform interval. namne isthe variable name

Matrix of Device nane state values. The first column
corresponds to the initial state values with subsequent
columns corresponding to the state values at the end of
waveform intervals. Note this matrix has 1 more column
than all the other history arrays.

Number of rowsin block nbr

Number of columnsin block nbr

Cross Reference of Block nbr rowsto System Rows

Cross Reference of Block nbr columnsto System Columns

=0if block nbr isnonlinear
=1if block nbr islinear
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Timelncrement Initialization

ddt Actual time increment
tto Beginning of current waveform interval
ttl End of current waveform interval

ddt,tt0,andtt 1 areinitialized according to the following equations:

ddt = sb_dt _init

tt0 = t0
tt1 = minimum of:
t0 + ddt
ti
sb_bp(1)
cnt _tot Set to zero: Total number of Jacobian inverses
his_fl ops Number of floating point operations used
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3.4.3.2TimeLoop

Truncation Error Control

The ssimulation time interval between t0 and t 1 may be divided into a number of
waveform intervals to improve the truncation error of the system variable waveforms. In
general, truncation error can be reduced by either increasing N or by decreasing the
waveforminterval tt1 - tt0. Within WAVESIM, the general strategy for dealing with
too large of atruncation error isto increase the number of coefficients N if the waveform
interval is less than sb_dt _opti mum and shorten the waveform time interval if greater
than sb_dt _opti mum In general, the strategy is to minimimize N while maximizing the
waveform interval subject to the constraint that the truncation error is within tolerances.
Finding the optimum combination of waveform intervals and number of coefficients is
not obvious and much work remains for devel oping better algorithms.

3.4.3.21 TimeLoop iteration initialization

The ssimulation time loop continues aslong astt0 < t1. The beginning of each
iteration begins with the definition of the following arrays:

tt
i

[ttO tt1l sb_dt_ave]
|dentity Matrix of size N
Zero Matrix of size NxN

Y4

VariableInitial Guesses

Next, initial guesses are provided for al system variables (var _nd_nbr and
var _fv_nane) by converting the waveforms i var _nd_nbr of typeivart_nd_nbr and
waveforms i var _fv_nane of typeivart _fv_name into waveforms of type wt ype and
SizeN.

In the present incarnation of WAVESIM, the same waveform is used as the initial
guess for all waveform time intervals regardless of the values for tt0 and tt1.
Normally, a constant value is specified. A better method would allow the user to specify
an actual guess as to the waveform history as a function of time. The time loop iteration
initialization would then have the responsibility of converting the waveform data as
provided by the user into a waveform of type wt ype and size N over the interval between
tto and tt1. Providing an initial guess for the waveform history of all the variables
would alow for example, a linear model of a system be run first to generate the initial
guess for a nonlinear model of the same system. Convergence of the nonlinear system
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should be greatly accelerated for many systems. Parameter sensitivity studies would
also be greatly accelerated if the parameter variations are not expected to cause maor
changesin system performance.

Failure Flags

Two final variables, converge failure andfatal _error areinitiaized to zero.
converge_fail ure isset to oneby ablock if convergence failed for that block or if one
of the block waveforms has too large of a harmonic content. Convergence could fail if
the number of iterations exceeded the maximum allowed and the alpha increment is
smaller than the minimum allowed. conver ge_f ai | ur e is used to indicate the following
blocks should not be solved because previous blocks could not be solved. fatal _error
is set to one if convergence cannot be obtained even when N is equal to or greater than
the maximum value sb_n_max and the time increment is equal to or smaller than the
minimum valuesb_dt _min. If fatal _error isset, thesimulation fails.
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3.4.3.2.2 Solving the Blocks

The blocks are solved sequentially in the order of their detection in the system
reduction procedure. If converge_fail ure iS nonzero, a previous block could not be
solved for the given time increment and number of coefficients. For this reason, a block
isnot solved if conver ge_f ai | ur e iSnonzero.

Figure 3.4.3-2: Solving the Block

Initialize
Block &
alpha
Call \
) Save | Failure
Dev.c.e Variobles ”| Returned
Functions
Calculate Increment Y | Success
Errors alpha Returned
v N ()
Y Y Calculate
> > Truncation
Error
Correct N
Variables J
. . Y Failure
Diverging Returned
Invert
Jacobian
N
Calculate | | Decrement
Jacobkian g alpha

Ipha % .
Restore N a Failure
Variables decgggent Returned
small

3.4.3.2.2.1 Block Initialization

i

Each block requires the initialization of several arrays and variables before the
block can be solved:



bl k_nbr_max_eqnerr
bl k_nbr_max_varcor

bl k_nbr _i max_eqgnerr

bl k_nbr i max_varcor

bl k_nbr_cnt

bl k_nbr_cnt_div

bl k_nbr _al pha

bl k_nbr _dal pha

good_al pha

good_var _nd_nbr

good_var _fv_nane

bl k_nbr _trec

bl k_nbr _ivc

div_cnt

div_err

Array of maximum errors for the block equations
Array of maximum variable corrections for the block
variables

Array of multipliers to bl k_nbr_max_eqgnerr for
apha<1
Array of multipliers to bl k_nbr_max_varcor for
apha<1

Number of iterations (initialized to 0)
Number of diverging iterations (initialized to 0)

Block continuation parameter.
=1if linear block
=sb_al pha_i ni t if nonlinear block

Block continuation parameter increment
=sb_dal pha_i ni t

Last value of alphafor which block converged.
Initialized to -1

Last value of node nbr potential for which block
converged. Initialized tovar _nd_nbr

Last value of import flow name for which block
converged. Initializedtovar _fv_name

Recommended recalculation time for block
Initializedtott 1

Array of indexes in block variable array for which the
variable correction was greater than allowed.
Initialized to an empty array.

Number of diverging iterations, set to O

Maximum relative error of previousiteration
Initially set to 0.
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3.4.3.2.2.2 Continuation Parameter L oop

The block continuation parameter loop continues as long as bl k_nbr _al pha < 1.
Within this loop, the following procedures occur:

1.
2.

7.
8.
9.

Import Variables for all associated devices specified

Device Objects called to generate

A. Export Variables

B. Device Jacobian Matrix

C. Statevaluesattimetti1

D. Recommended recalculation time

Block recalculation time calcul ated
KCL and Potential Difference Equation Errors calculated

Errors Scaled and compared to maximum limits
if good, solution saved and bl k_nbr _al pha incremented
as necessary.

Iterations counted and compared to maximum limit
bl k_nbr _al pha decremented and variables reset
as necessary.

Block Jacobian Matrix assembled and scaled
Variable Corrections Calcul ated

System variables corrected

3.4.3.2.2.2.1 Device Import Variable specification

The matrix dev_i _name is generated for each device nanme where the columns
are the waveform coefficients for each of the device import variables. Each column of
thedev_i _name matrix isone of the system variables, hence all are available.

3.4.3.2.2.2.2 Call Device Objects

Each of the device objects associated with the block is provided with the

following information:

wt ype Waveform type

dev_i _nane Device name import variable matrix
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dev_par_nanme Devicenane parameter array
dev_sO_nane Device nane stateinitial valuett 0 array

tt Time structure
bl k_nbr _al pha Block nbr Continuation Parameter

From this information, each of the device objects generates the following
dev_e_nane Device name export variable matrix

dev_j _nane Device name jacobian matrix

dev_s1 nane Device name state final valuett 1 array

dev_tr _nanme Device name recommended recal culation structure
=[nt1 ntt] where
nt 1 = recommendedtt 1 for present interval
or settott 1 if no recommendation
ntt =recommendedtt 1 for next interval
or settott 0 if no recommendation

3.4.3.2.2.2.3 Recommended Recalculation Time

The block recommended recalculation time bl k_nbr _trec is set to the
minimum value of all thent 1 values from al of the devices associated with the block.
If convergencefailsbl k_nbr _trec isused to generate anew valuefortt 1.

Similarly, bl k_nbr_ntrec is set to the minimum value of al the ntt values
greater than tt 1 from all of the devices associated with the block. For a successful
convergence, bl k_nbr_ntrec is used to help generate a new value for tt 1 for the
next waveform interval.

3.4.3.2.2.2.4 Equation Errors

For each of the node nd KCL equations associated with block nbr, an error
variable bl k_nbr _kcl _nd is generated by adding the flow variables of the attached
terminals to the flow through Gni n. Likewise, for each of the export potential name
Potential Difference equations associated with block nbr, an error variable
bl k_nbr _pot _name is generated by subtracting from the node potential waveform, the
waveform of the export potential as well as the contribution from Ri n

bl k_nbr_kcl _nd = ~ dev_e_nane(:,col) + X var_fv_vnane +
var_nd_nd x Grin
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bl k_nbr_pot _vnane = var_nd_nd - dev_e_name(:,col) -
dev_x_name(:,col) x Rmn

where
nbr Block Number
nd Node Serial Number
name Device name
vname Variable name

(:,col)  Theappropriate column from the matrix
X Either e or i depending on associated flow variable
being an export or import variable

The KCL equation errors are multiplied by the appropriate flow variable scaling factor
from the sys_fl ow scal e array while the Potential Difference equation errors are
multiplied by the appropriate potential scaling factor from the sys_pot _scal e array.
Once scaled, the error vectors are assembled into a block error vector bl k_nbr _err.

3.4.3.2.2.25Error Criteria Check
Applying Error Criteria

If bl k_nbr _al pha > 1 then bl k_nbr _i er isfilled with the indexes of the rows
of bl k_nbr_err which are greater in magnitude than the corresponding rows of
bl k_nbr_max_eqnerr. In the same manner, bl k_nbr_rel _err is set equa to the
absolute value of bl k_nbr _err divided by bl k_nbr _max_eqgnerr.

If bl k_nbr _al pha < 1 then bl k_nbr _i er isfilled with the indexes of the rows
of bl k_nbr_err which are greater in magnitude than the corresponding rows of
bl k_nbr _i max_eqgnerr. Similarly, bl k_nbr_rel _err is set equa to the absolute
value of bl k_nbr _err divided by bl k_nbr _i max_eqnerr.

Diver gence Check

On thefirst iteration for a given value bl k_nbr _al pha, di v_cnt isinitialized to
0. For the first sb_div_start_cnt - 1 iterations, di v_err is set to the maximum
value of bl k_nbr_rel _err. On subsequent iterations, if the maximum value of
bl k_nbr_rel _err is smaler than div_err then div_cnt is reset to 0, otherwise
div_cnt is incremented. In any case div_err is set to the maximum value of
bl k_nbr_rel _err. If div_cnt > sb_div_max_cnt then the algorithm assumes the
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block is diverging for the given value of bl k_nbr _al pha. The failure to converge
condition is indicated by setting bl k_nbr_cnt = maxcnt: ether sb_i _maxcnt if
bl k_nbr_al pha < 1 0rsb_maxcnt if bl k_nbr_al pha > 1.

Block Conver gence Success

If blk_nbr_ier is the empty set or sb_check_egn_err is 0, and
bl k_nbr _al pha > 1 and bl k_nbr_i vc is the empty set, then the block solving
algorithm has been completed and the continuation parameter loop is broken. The
algorithm proceeds to checking the truncation error for the system variables associated
with the block.

I ncrement Continuation Parameter

If blk_nbr_ier is the empty set or sb_check_egn_err is 0, and
bl k_nbr _al pha < 1 and bl k_nbr _i vc is the empty set, then it is time to increment
the continuation parameter bl k_nbr _al pha. First however, the current value of al
the variables associated with the block are copied into good_var_nd_nd or
good_var_fv_name. bl k_nbr_al pha is copied into good_al pha. The variables and
continuation parameter must be saved because it may be necessary to restore the
variables if the block fails to converge with the next continuation parameter value.
bl k_nbr_alpha is then set equa to the minimum of 1 and
bl k_nbr _al pha + bl k_nbr _dal pha and the continuation parameter loop is repeated.

Iteration Count: Decrement Continuation Parameter

If the error is till too large, corrections to the system variables associated with
the block must be generated. But first, the number of iterations bl k_nbr_cnt must be
incremented and compared to the maximum allowed maxcnt : either sb_i _maxcnt if
bl k_nbr_al pha < 1 or sb_maxcnt if bl k_nbr_al pha > 1. If the limit has been
exceeded, and one of the devices has recommended a value for bl k_nbr_trec less
thantt 1, then converge_fail ure isset to 1 and attempts to solve the block cease. If
the limit has been exceeded and bl k_nbr _trec equalstt 1, the block is recalculated
with adecremented bl k_nbr _al pha which is set to the maximum of:

(bl k_nbr _al pha + good_al pha) / 2

bl k_nbr_al pha - bl k_nbr_dal pha
0
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If bl k_nbr_al pha has been decremented, the system variables associated with
the block must be reset to the values stored in either good var _nd_nd or

good_var _fv_nane.

Block Convergence Failure

If bl k_nbr_al pha - good_al pha < sb_dal pha_mi n then the block has failed
to converge and nothing more can be done on the block level. The variabletrec is
set equal to bl k_nbr _trec and the converge failure flagissetto 1. Thisisa
signal to the system to not solve any more blocks and either adjust the value of tt 1 or
adjust the number of coefficients N before trying to solve the system again.

3.4.3.2.2.2.6 Assemble Jacobian
Jacobian Construction

If the error is too large, but the maximum number of iterations naxcnt has not
been exceeded, the block jacobian matrix must be calculated. The block jacobian
matrix bl k_nbr _j isconstructed in the same manner as the system structural jacobian
was previously constructed with the exception that now the variables and equations
are only those which are part of the block and the matrix elements are submatrices
instead of structural jacobian codes.

Jacobian Scaling

Once the block jacobian has been assembled, it is scaled by dividing each of the
columns by the appropriate element of either the sys_fl ow scal e (if the column
corresponds to an import flow variable) or sys_pot _scal e (if the column corresponds
to a node potential) vectors. Likewise, rows of the block jacobian are multiplied by
the appropriate element of either the sys_f 1 ow_scal e (if the row corresponds to a
KCL equation) or sys_pot _scal e (if the row corresponds to a Potential Difference
equation) vectors. Scaling is performed to normalize al of the variables and
hopefully improve the accuracy of the numerical computations required for solving
the variable corrections.

Correction Vector Calculation

The variable correction vector bl k_nbr _dl t a is generated by solving the matrix
eguation:

-90-



bl k_nbr_j blk _nbr_dlta = blk_nbr_err

The most direct method (and one of the least numerically efficient method) of
calculating bl k_nbr _dl ta is to invert bl k_nbr_j and multiply by bl k_nbr_err.
Relaxation methods and Gaussian elimination with back substitution are other means
to the same end.

Singular Jacobian

If bl k_nbr_j issingular, bl k_nbr _dlI t a can not be calculated and in the present
incarnation of WAVESIM, the simulation fails. Future versions should include an
algorithm for attempting to recover from the singular jacobian.

3.4.3.2.2.2.7 Correct Variables

Each of the system variables associated with the block are corrected by
subtracting the appropriate rows of bl k_nbr _dl ta divided by the corresponding
element of the scaling factor vectors (sys_pot _scal e Or sys_f | ow _scal e).

3.4.3.2.2.2.8 Variable Correction Criteria

If the block is nonlinear (bl k_nbr_linear_flag == 0) and the variable
correction flag is set (sb_check_var_err == 1) then bl k_nbr_i vc contains the
indexes of bl k_nbr_dlta which exceed in magnitude bl k_nbr _i max_varcor if
bl k_nbr_alpha <1 or blk _nbr_max_varcor if blk_nbr_alpha > 1. If
bl k_nbr _i vc IS not empty, then one of the variable corrections was too large and
another iteration is necessary. In any case, the continuation parameter loop is
repeated.
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3.4.3.2.2.3 Truncation Error Control

Once a block has been solved, a truncation error check must be performed on
each of the associated system variables. The truncation error is assumed negligible if
the waveform content of the last sb_nbr _wc coefficients of each waveform is less than
the limit specifed by sb_max_wc. If al the system variables have negligible truncation
error, block nbr has been solved and the next block is processed. If the truncation error
of any of the variables is too large, conver ge_fai | ure is set to 1 to indicate the block
has not been solved.

3.4.3.2.3 Time Step Control: Successful Convergence

If all the blocks successfully obtained a solution then the variable
converge_failure will equal 0. The task now is to save al of the variables in the
history arrays, updatett 0 and t t 1, update N, and update the device states.

Update History Variables

The history variables are extended by one column. The variable his_col is
incremented and is the column index for al but the state arrays. In particular:

his t(1,his _col) =1tt0
his t(2,his_col) =1tt1l
his N(1,his _col) =N

his_nd_nbr(1: N, his_col) = var_nd_nbr
his fv_name(1: N his_col)

var _fv_name

his_s _nanme(:, his_col +1) = dev_sl1 nane
dev_sO0 nanme = dev_sl1 nane

where (1: N, hi s_col ) refersto the first Nrows of columnhis_col and (:, his_col +1)
refersto all therows of columnhis_col + 1.

Update Time Interval and Number of Coefficients

Thetimeinterval is updated by:
tt0 = ttl

If tt0 >t1 then the ssmulation has successfully completed and the time loop is
exited. Otherwise must updatett 1 aswell. Initialy:

ttl =ttl + ddt
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Next, check if a break point (element of sb_bp) exists between tt0 and tt1. If
such abreak point exists, settt 1 equal to the earliest break point after t t 0.

Since reducing N is normally beneficial, if tt1 - tt0 > sb_dt_opti num and
N > sb_N mn the agorithm assumes the waveforms are well behaved and
decrementing N (aslong asN > sb_n_nmi n) IS appropriate.

Since the series converged for the previous time increment, setting ddt equal to the
minimum of 2xddt and sb_dt _max allows the system to increase the next time interval.

Plot Inter mediate Results

Before proceeding to solve the system over the updated time interval, WAVESIM
creates aplot of the system variables over the previous timeinterval.
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3.4.3.2.4 Time Step Control: Unsuccessful Convergence
Fatal Error

If one of the blocks failled to converge, tt1 - tt2 < sb_dt_nin, and
N = sb_n_nmax then the ssmulation has failed completely and can not proceed further. In
this case, the simulation comesto a halt prematurely.

Recommended Recalculation Time

If one of the blocks failed to convergeandtrec < tt1,thenttl = trec and the
time loop is repeated.

Time Increment / Number of Coefficient Control

If one of the blocks faled to converge and trec > tt1,
ttl - tt0 < sb_dt_optimumand N < sb_n_max, N is incremented in an attempt to
improve convergence. To improve convergence if tt1 - tt0 > sb_dt_opti num or
N > sb_n_nmax, the time interval is haved by setting tt1 = (tt1 + tt0)/2.0.
Halving ddt is also prudent as long as ddt > sb_dt _nin. Once ddt and N have been
updated, the time loop is continued.

3.4.3.3 Smulation Wrap-up

Once the simulation has completed, the variables stored in the history arrays are
plotted and saved as the user desires. |If the operator desires, the device state variables
can be used as the initial conditions for a following simulation or saved in file for future
simulations.
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3.5 Device M odelling Techniques

The previous sections described the method WAVESIM uses to generate a
mathematical system of equations and variables for interconnecting a number of different
devices. Up to now a device has been treated as a black box characterized by its definition,
initialization, variables which must be provided to it as resources and variables which are
generated by it as products. Asareview, here are properties of the black box:

Definition (devi ce. def)

Name of Device Type

Number of Parameters
Names of Parameters
Default Vaues of Parameters

Number of States
Names of States
Default Vaues of State Initial Conditions

Number of terminals

Terminal Definitions
Terminal Name
Terminal Type (normal or information)
Flow Variable Type (import or export)
Potential Variable Type (import or export)
Terminal KCL Group Number

Device Structural Jacobian
Initialization (WAVESIM input file)

Name of Device

Name of defining Device Type
Parameter Values

State Initial Conditions
Assignment of terminals to nodes
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Resour ces (Argumentsof MATLAB devi ce. mfile)

Waveform type
Import Variable Waveforms
Parameter Values
Value of states at beginning of time interval
Time Structure

Beginning time of Interval

Ending time of interval

Minimum time interval of interest
Continuation Parameter

Products (Productsof MATLAB devi ce. mfile)

Export Variable Waveforms

Device Jacobian Matrix

Value of states at end of timeinterval

Recommended Time Structure
Recommended Recalculation Time this interval
Recommended ending time of next interval.

While these specifications are the hard requirements for devel oping a new device type,
they are not very constraining and it is possible to generate very inefficient and unworkable
devices. The following sections are meant as guidance for developing new device types.
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3.5.1 Import and Export Variable definitions

One of thefirst tasksin designing a new object is determining which variables should
be import variables and which should be export variables. The requirement is simply that
the total number of export variables associated with normal terminals must equal the total
number of import variables associated with normal terminals. To minimize the number of
system equations however, one should usualy try to define flow variables as export
variables and potential variables asimport variables.

The constitutive equations defining a device may preclude defining all the flow
variables as export variables. An ideal voltage source of magnitude V¢ for example, has
the following constitutive equations:

l,=-1,

Clearly, this set of equations can not be reorganized to specify both currents (flows)
explicitly. In this case potential V, and flow |, are export variables and potential V, and
flow I, are import variables.
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3.5.2 Interface Variable Units

When developing devices, a consistent convention for interface variable units is
required. Flows are usually referenced such that positive flow into a termina with a
positive potential refers to power dissipated by the device. This definition is clear if the
flow corresponds to currents or forces, but is less clear for torques. For rotating shafts
where torques are the flow variable and rotational speed the potential, the positive
direction for speed is in the normal operating direction while the direction for torque is
determined by the power dissipation rule. A motor connected to a propeller would
normally have associated a positive rotational speed and a negative torque. The propeller
would have a positive rotational speed and a positive torque associated with its interaction
with the motor along with a positive forward speed and negative force associated with its
interaction with the ship dynamics. The ship dynamics model would have an associated
positive force and positive forward speed.

Many power system simulations go through great effort to normalize all variables by
dividing by device base quantities to improve numerical accuracy. The models are all
expressed in a Per Unit (PU) basis where the base quantities are machine ratings. The
problems occur when several devices with different base quantities are combined. The
system variables must al be scaled appropriately to ensure the elements of the system
eguations are al in the same units. Keeping the bases consistent requires much effort and
isvery proneto error.

In WAVESIM, physical quantities using the metric system (SI) are recommended for
al interface variables. Strict use of the metric system ensures the proper quantities are
added and subtracted on the systems level. Individual devices may then scale the interface
variables by their own base quantites for internal calculations. Likewise, each node of the
system can have a scaling factor assigned to it for both flow and potential variables. In this
manner, the beneficial aspects of the per unit system can be retained with little confusion
asto ensuring consistent base quantities.
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Length
Time
Mass
Voltage
Current
Force
Angle

Speed
Rotational Speed

Torque

Metric System (SI)

meters
seconds
kilograms
volts
amperes
newtons
radians

meters/second
radians/second

newton-meters

-99-



3.5.3 Potential References

The node potentials are al referenced to an arbitrary value called 0. The reference
frame for this level is a property of the device definition, but must be consistent with the
reference frame for other device definitions to which the device may be connected.
Following are suggested reference points:

Electrical Voltage Volts above Ground Potential
Mechanical Angle Radians relative to the positive vertical
Mechanical Rotational Radians per Second relative to stationary
Speed

Mechanical System Dependent

Displacement

Mechanical Speed meters per second relative to stationary

If mechanical rotational speeds or mechanical speeds are specified, but the actual angle is
required within the device calculations, the speed can be integrated. If more than one
device requires the integration of the speed, then the system modeller must ensure the state
initial conditions corresponding to the angle or displacement is consistent for all devices.

If an absolute reference cannot be established for a device, two terminals can be
defined such that all constitutive relations depend only on the difference between the two
terminal potentials. This relative definition of potentials is commonly used for modelling
circuit elements. An ideal transformer for example, is a four terminal device with the
following constitutive equations:

le = n(VZp - VZm) + Vlm

ilm =- izm / n
I1p ==l
I2p = -l

Note that V,, is defined relative to V,,, and is a function of (V,, - V,,,). None of the export
flow variablesis afunction of the absolute value of any of the potentials.
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3.5.4 Discontinuity Control

One of the difficulties with using vectors of orthogonal series coefficients to
represent waveforms is the poor truncation error performance when approximating
discontinuous variables or variables having discontinuous derivatives. These
discontinuities are usualy a function of either time or the zero crossing of one of the
variables. In any case, the time of the discontinuity is often easily determined by the
device object. If the frequency of the discontinuities is low enough, it would be prudent
for the device to specify the earliest discontinuity of the interval as a recommended
recalculation time.

If the discontinuity is a function of a waveform zero crossing, special care must be
taken to ensure the device does not continously estimate the zero crossing to be within a
small increment of tt0 or tt1 and force the time loop to iterate tt1 around the
discontinuity. One way around this problem is for the device to move or remove any
discontinuities within sb_dt _ave of either tt0 or tt1 in any of its export variables. If
sb_dt _ave is small enough, then moving the discontinuity should not affect the accuracy
of the simulation very much yet still prevent the system time loop from hunting for the
discontinuity by varyingtt 1.

If many discontinuities occur in an export variable more frequently than sb_dt _ave,
then the export variable should be smoothed. The smoothing operation calculates the local
average of a waveform over the interval [t-sb_dt _ave,t+sb_dt _ave]. In this manner, the
higher order terms of the export variable are attenuated and the waveform is more likely to
pass the truncation error test.
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3.5.5 Congistent Initial Conditions

Most simulation environments require the user to specify theinitial values for all the
states at timet 0. In thisregard WAVESIM is no different. Unfortunately, determining a
consistent set of initial conditions which meet some definition of normal operating
conditions is not an easy task for either a system modeler or a computer program. First of
al, the concept of a normal operating condition, is not aways easy to describe
mathematically. Furthermore, even if a definition for normal operating condition, can be
made, there is often much difficulty in determing that condition.

An ideal solution would be for each device to calculate its own initial conditions
during the first time increment. If a device is capable of determining an initial condition
based only on its parameters and the values of its import variables, then the following
technique can be used:

1. Defineastatecaled| c, adwaysinitializeit to O.
2.  Define Sufficient Parameters to determine the normal operating condition.

3. Within the constitutive equations, have a check for the initial value of 1C
equalling zero. If 1C = 0 a the beginning of the interval then use the
eguations for the normal operationg condition to determine the initial values of
the other states. Otherwise use the initial values of the other states as passed to
the device. Inany case, the final value for the state | C should be set to 1.

This method for determining the initial conditions is well suited for determining the
initial conditions of the states of rotating machines. Essentially, aload flow is conducted
in the first time increment to determine the initial state values.
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3.5.6 Wavefor m type conversion

Performing the calculations for the constitutive equations for certain devices may be
easier to accomplish in one waveform over other waveforms. Converting the import
variables to a fixed waveform type is permissible and at times desirable. As long as the
export variables are converted back to the proper type and the jacobians reflect the
waveform conversions, all should work out well.

If the export variables depend on higher order terms of intermediate calculations,
converting the import variables to waveforms of a length longer than N and performing all
of the intermediate calculations using this longer length before truncating back to N when
generating the export variables may be desirable in avoiding excessive truncation errors.
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Chapter 4 WAVESIM

4.1 Basic Description

WAVESIM, a simulation program written in the C programming language,
demonstrates the algorithms discussed in detail in Chapter 3 for simulating systems of
nonlinear lumped parameter models representing the electro-mechanical components
comprising an Integrated Electric Drive system. The genera characteristics of WAVESIM

are:

1.  System and Simulation Parameters specified in atext Input File.

2. Device Definitions arein text filedevi ce. def .

3.  WAVESIM Performsfollowing 4 tasks:

A.
B.
C.
D.

Reads in Device Definitions and initializes simulation.

Reads Input File and determines devices and nodes of system.
Builds and reduces system into a sequence of blocks.
WritesaMATLAB script file for conducting the simulation.

4. Theactua Simulationisconducted in MATLAB.

5.  Supported Waveform types are:

moow>

Data Series.

Fourier Series.
Legendre Series.
Polynomial Expansions.
Chebyshev Series.

6. Waveform operators are MATLAB functions defined in M-files.

7.  Device Constitutive Equations are detailed in MATLAB functions defined in
M-files.

8.  Thepresent Incarnation of WAVESIM has these limitations:

A.
B.
C.

Subsystems have not been implemented.

System and Device Structural Jacobians must be time independent.
Newton-Raphson is the only equation solving method used.
Relaxation Techniques have not been implemented.
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MATLAB was chosen as the environment for conducting the simulation for the
following reasons:

1.

MATLAB is ideally suited for treating vectors and matrices as abstract data
types.
MATLAB has built in plotting routines.

The ability to create MATLAB M-files which when invoked, execute a long
series of commands called a script. M-files can aso be used to create new
MATLAB functions.

MATLAB has many built in functions for analysing matrix properties.

Since WAVESIM is an algorithm demonstration program, speed is not of
primary concern. Interest in determining if the algorithms work is of higher
interest than optimizing for speed.
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4.2 Running WAVESIM
Under either the UNIX operating system or IBM DOS, WAVESIM is executed by
entering at the commmand prompt:
at hena% wavesimfile.in
wherefi | e. i n isan optiona entry for the file name of the input file. WAVESIM

will attempt to read in the devi ce. def file and if successful, will display the following
header:

VWAVESI M
Revision 2.0 <> April 1991

(C Copyright 1990, 1991 by Norbert H. Doerry

If WAVESIM encountered errors when reading devi ce. def , an error message is
printed and the program terminates.

If file.in wasnot specified on the command line, the user is prompted for afile
name:

Enter WAVESI M I NPUT file nanme :

If instead of a file name q is entered, WAVESIM terminates execution. A directory
listing can be obtained by entering a ? followed optionally by afile specification (operating
system dependent).

Under normal execution of WAVESIM, there is no further interaction with the user.

WAVESIM automatically creates an output file having the same base filename as
file.inbuthaving. masanextension(i.e.file.in becomesfile.m.

NOTE: Do not create input files with . mextensions as these files will be overwritten
by WAVESIM. Also avoid using file names which are valid MATLAB functions.

WAVESIM provides extensive support for providing the user with feedback through
the use of the DEBUG command. Most of the major routines in WAVESIM have a debug
option for displaying the results of calculations internal to WAVESIM.
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If errors are found reading either devi ce. def or theinput file, WAVESIM displays
an error message which includes the file name and the line number within the file.
WAVESIM attempts to continue reading an input file even if errors are detected but will
only create an output file if no errors are encountered.
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4.3 Input File Specification

The Input File describes the system topology, defines the device parameters, and
specifies ssmulation paramaters. The basic characteristics of thefile are:

1.
2.
3.

o N o u

ASC I text files.
Lines beginning with % # or ! areignored. Empty lines are ignored as well.

Data lines can be continued on the following line if the last charactersin the line
are... or\.

Commands al begin with a key-word. Key-words are case insensitive and
usually can be truncated to three letters unless a conflict with another key-word
exists.

Commands and their arguments may be separated by either spaces or tabs.
The contents of other files can be incorporated by using the | NCLUDE command.
Single Line Commands have data arguments entered on only one line.

Multiple Line Commands consist of groups of subordinate commands. The group
must end with a line beginning with the key-word END.

Hereisasummary of the Commands available:

DEBUG Print Debug Information

DEFAULT Default System Parameter Initialization
DEVI CE Device Specification

| NCLUDE Include another file

NCDE Node Parameter Specification

TI ME TimelIncrement Control
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%
%rcrc.in
%
debug
buil d_system.identify
bui | d_system bl ocks
find_bl ock
END
%
devi ce VDC_SOURCE Vs
TERMNAL 1 1
TERMNAL 2 0
PARAVETER VS 1.0
END
%
devi ce RESI STOR R1
TERMNAL 1 1
2
R

%

devi ce RESI STOR R2
TERM NAL 1 2
TERM NAL 2 3
PARANVETER R
END

%

devi ce | NDUCTOR L1
TERM NAL 1 2
TERMNAL 2 O
PARANVETER L 1.0
END

%

devi ce | NDUCTOR L2
TERMNAL 1 3
TERMNAL 2 O
PARAMIER L 1.0
END

%

devi ce CAPACI TOR C1
TERM NAL 1 2
TERMNAL 2 O
PARANVETER C
END

1.0

%

devi ce CAPACI TOR C2
TERM NAL 1 3
TERMNAL 2 O
PARANVETER CcC 1.0
END

%

Example Input File

|l
[
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Example Input File (continued)

%

node 1
scal e potential 1.0
scal e flow 1.0
error kcl 5e-3
error pot 5e-3
end

%

def aul t
Grin O
RmMin O
check both
error egn kcl 5e-3

error eqn pot 5e-3
error var node 5e-3
error var flow 5e-3
error mult kel 10.0
error mult pot 10.0
error mult node 10.0
error mult flow 10.0

scal e potential 1.0
scal e fl ow 1.0

max count 10
max int count 6

alpha init 1.0
alpha inc init .25
al pha inc mn .05

di verge start 3
di verge max cnt 2
di verge error nult 10.0

wavef orm content max . 005
wavef orm content nbr 2

wtype 3
nbr coef 7

nbr coef mn 6
nbr coef max 14

nbr data 20
END

%

time
dt mn 0.025
dt max 5.0
dt opt 0.250
dt init 1.0
dt ave 0.0
start 0.0
finish 20.0
END

%
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4.3.1 DEBUG

If DEBUG is specified without any arguments, the command is interpreted as a
multi-line command. Each of the following lines should contain the name of one of the
subroutines listed below. If the key-word OFF follows the subroutine name, the debug flag
for that subroutine is turned off. Otherwise, the debug flag for the specified routine is
turned on. The last line of the group should begin with the key-word END.

If DEBUG is specified with arguments, the command is interpreted as a single-line
command and the arguments should consist of one of the subroutines listed below and
optionally, the key-word OFF. A single line command does not have an END keyword
associated withit.

Here is a list of subroutines for which debug flags have been defined (Note: The
subroutine names are case sensitive)

i nit_devices
read_devi ce_def

read file

read fil e _device

read file default
read fil e _node

read file_tinme
read fil e _debug

buil d_system

buil d_system.identify
bui |l d_system structural jacobian
bui |l d_system bl ocks
find_bl ock
print_system.identify
wite file
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4.3.2 DEFAULT

If DEFAULT is specified without any arguments, the command is interpreted as a
multi-line command. Each of the following lines should contain one of the subordinate
commands listed below. The last line of the group should begin with the key-word END.

If DEFAULT is specified with arguments, the command is interpreted as a single-line
command and the arguments should consist of one of the subordinate commands listed
below. A singleline command does not have an END keyword associated with it.

Hereisasummary of the DEFAULT subordinate commands:

ALPHA Continuation Parameter Control
CHECK Error Checking Flags

Dl VERGE Divergence Test Control

ERROR Default Error Levels

GM N Default Node L eakage Conductance
MAX Maximum Iteration Counts

NBR Number of Coefficients Control

RM N Default Node Series Resistances
SCALE Default Variable Scaling Factors

WAVEFORM CONTENT
WI'YPE

Waveform Content Limits

Waveform Type
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4.3.2.1 DEFAULT: ALPHA

The ALPHA subordinate command specifies the parameters needed to control the
continuation parameter for nonlinear blocks.

Command Description MATLAB Variable
ALPHA I NI T Val ue Continuation Parameter sb_al pha_init
Initial Value

ALPHA I NC NI T Val ue Continuation Parameter sb_dal pha_init
Initial Increment

ALPHA | NC M N Val ue Minimum Continuation sb_dal pha_nin
Parameter Increment

For anonlinear block, the continuation parameter isinitialized to the ALPHA | NI T
value. Theinitial increment for the continuation parameter is specified by ALPHA | NC
I NI T. If the block fails to converge, the continuation parameter is progressively
decremented until the block converges or if convergence fails due to the difference
between the last value of the continuation parameter that converged and the present value
of the continuation parameter being lessthan ALPHA | NC M N. If the block converges,
the continuation parameter isincremented by ALPHA | NC | NI T until it equals 1.

4.3.2.2 DEFAULT: CHECK

The CHECK subordinate command determines for nonlinear blocks, whether the
eguation error, the variable correction magnitude, or both should be used for the
convergence criteria.

Command Description MATLAB Variable

CHECK EQN Check only Equation Errors sb_check_eqn_err = 1
sb_check var_err =0

CHECK VAR Check only Variable sb_check_eqn_err = 0
Corrections sb_check _var_err =1

CHECK BOTH Check both Equation Errors sb_check_eqn_err = 1

and Variable Corrections sb_check_var_err =1
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4.3.2.3 DEFAULT: Dl VERGE

The DI VERGE subordinate command specifies when and how to check a nonlinear
block for divergence. After DI VERGE START iterations, if the largest relative error
increases for DI VERGE MAX CNT iterations and the relative error is at least DI VERGE
ERROR MULT then the block is assumed to be diverging and the conver ge_f ai | ure flag
IS Set.

Command Description MATLAB Variable

DI VERGE START Val ue Number of iterations to wait sb_div_start _cnt
before testing for divergence

DI VERGE MAX CNT Val ue Number of iterations to sb_div_max_cnt
adlow relative error to
increase befor concluding
divergence

DI VERGE ERR MULT Val ue Vaue of relative error sb_ i _div_err
below which to ignore
divergence iteration count
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4.3.24 DEFAULT: ERROR

The ERRCR subordinate command determines for nonlinear blocks, the default
maximum equation errors and variable corrections which are permissible. These default
values can be overridden for a specific node with the NODE command. When the
conituation parameter equals 1, ERROR EQN KCL is the maximum error for the node
KCL equtions and ERROR EQN POT is the maximum error for the potential difference
equations. Likewise when the continuation parameter equals 1, ERROR VAR NODE is
the maximum correction to a node potential and ERROR VAR FLOWis the maximum
correction to an import flow variable. The ERROR MULT subordinate commands are
multipliersto the above limits for continuation parameters less than 1.

Command Description MATLAB Variable

ERROR EQN KCL Val ue Default KCL Equation sys_kcl _err?
Maximum Error

ERROR EQN POT Val ue Default Potential Difference sys_var_err?
Maximum Error

ERROR VAR NODE Val ue Default Maximum sys_nd_err?
correction to Node
Potentials

ERROR VAR FLOW Val ue Default Maximum sys _fv_err?
correction to Import Flow
Variables

ERROR MULT KCL Val ue Multiplier to ERROR EQN sb_i _kcl _err
KCL when continuation
parameter < 1

ERROR MULT POT Val ue Multiplier to ERROR EQN sb_i _pot _err
POT when continuation
parameter < 1

ERROR MULT NODE Val ue Multiplier to ERROR VAR sb_i_nd_err
NODE when continuation
parameter < 1

ERROR MULT FLOW Val ue Multiplier to ERROR VAR sb_i _fv_err
FLOW when continuation
parameter < 1

Note 1: sys_xxx_err are actually arrays containing for each equation or variable, either

the default value specified here or the overriding value specified in the NODE
command.
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4.3.2.5DEFAULT: GM N

The GM N subordinate command defines the default value for G,;,,. G, IS used to
modify the KCL equations to help prevent singular systems. G,;,, should normally be set
to O unless a singularity problem exists. The value for G, can be overridden for a
particular node through the NODE command.

Command Description MATLAB Variable
GM N Val ue Leakage Conductance to O sys_Gri n*
Potential

Note 1. sys_Gni n isactually an array containing the value for G,,,, for each node: either
the default value specified here or the overriding value specified in the NODE
command.

4.3.2.6 DEFAULT: MAX

The MAX subordinate command determines the maximum number of
Newton-Raphson iterations for a nonlinear block before the continuation parameter is
decremented. MAX COUNT specifies the maximum number of iterations when the
continuation parameter equals 1 while MAX | NT COUNT specifies the maximum
number of iterations when the continuation parameter islessthan 1.

Command Description MATLAB Variable
MAX COUNT Val ue Maximum number of sb_maxcnt
Iterations when the
continuation parameter
equals 1
MAX | NT COUNT Val ue Maximum number of sb_i _maxcnt

Iterations when the
continuation parameter is
lessthan 1
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4.3.2.7 DEFAULT: NBR

The NBR subordinate command controls the number of coefficients the waveforms
will have. NBR COEF specifies the initial number of coefficients to use. NBR COEF
M N is the minimum number of coefficients to use while NBR COEF MAX is the
maximum number of coefficients. NBR DATA is the number of data points per
waveform used when generating plots.

Command Description MATLAB Variable

NBR CCEF Val ue Initial number of n
coefficinets

NBR CCEF M N Val ue Minimum number of sb_n_nin
coefficients

NBR CCEF MAX Val ue Maximum number of sb_n_max
coefficients

NBR DATA Val ue Number of points per sb_n_data

waveform to usein plots.

4.3.2.8 DEFAULT: RM N

The RM N subordinate command defines the default value for R;,,. R, IS used to
modify the Potential Difference equations to help prevent singular systems. R, should
normally be set to O unless a singularity problem exists. The value for R,;, can be
overridden for a particular node through the NODE command.

Command Description MATLAB Variable
RM N Val ue Series Resistance for Export sys_Rni n*
Potentials

Note 1. sys_Rmi n is actually an array containing the value for R, for each node: either
the default value specified here or the overriding value specified in the NODE
command.
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4.3.29 DEFAULT: SCALE

The SCALE subordinate command specifies the default scaling parameters for the
potential and flow variables. The default scaling parameters can be overridden for a
particular node through the NODE command.

Command Description MATLAB Variable
SCALE POTENTI AL Val ue Default scaling factor for sys_pot _scal e’
Potentials
SCALE FLOW Vval ue Default scaling factor for sys_fl ow scal e!

Flow Variables

Note 1: sys_pot _scal e and sys_f | ow_scal e are actually arrays containing the scaling
factors for each node: either the default values specified here or the overriding
values specified in the NODE command.

4.3.2.10 DEFAULT: WAVEFORM CONTENT

The WAVEFORM  CONTENT subordinate command controls the maximum
allowable truncation error by specifying the maximum waveform content WAVE CONT
MAX for the last WAVE CONT NBR coefficients of awaveform.

Command Description MATLAB Variable
WAVE CONT MAX Val ue Maximum Waveform sb_nmax_hh
Content
WAVE CONT NBR Val ue Number of Coefficients to sb_nbr _hh

apply maximum to.

4.3.2.11 DEFAULT: W'YPE

The WI'YPE subordinate command specifies the waveform type to use in the
simulation

Command Description MATLAB Variable

WI'YPE Val ue Waveform Type Indicator wt ype
Data Series

Fourier Series

Legencre Series

Polynomials

MATLAB Polynomials
Chebyshev Series

DU WNPE
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4.3.3 DEVI CE

DEVI CE is always a multi-line command. The command must be entered in the
following format:

DEVI CE Devi ce_Type Nane
where:
Devi ce_Type Device Type Namefromdevi ce. def file.
Nane Name of this particular device.

The subordinate commands for the DEVI CE command are:

TERM NAL Assign Terminals to Nodes (mandatory).
PARAVETER Assign Parameter Values (optional).
STATE Assign State Initial Conditions (optional).

All of the terminals as defined in the devi ce. def must be assigned to a node. If the
parameters or states are not assigned values, the default values specified in devi ce. def
are used.

Thelast line of the command group must begin with the key-word END

4.3.3.1DEVI CE: TERM NAL

The TERM NAL subordinate command assigns a terminal to a node and must be
entered in the following format:

TERM NAL Ter m nal _Nane Node_ Nbor
where:
Ter m nal _Nane Terminal Name from devi ce. def file.
Node Nbor Serial Number of Node thisterminal is attached to.

All of the terminals as defined in devi ce. def must be attached to a node of the
system.

-119-



4.3.3.2DEVI CE: PARAMETER

The PARAMETER subordinate command assigns a value to a parameter of the
device. If the parameter isasingle value as defined in devi ce. def then the parameter
command must be of the following format:

PARAVETER Par anmet er _Nanme Val ue

where:

Par amet er _Nane Parameter Namefromdevi ce. def file
Val ue Parameter Value.

If the parameter is a matrix as defined in devi ce. def then the parameter
command must be of the following format:

PARAMETER Par amet er _Nanme MATRI X
mat ri x_val ues
END

where:
Par amet er _Nane Parameter Namefromdevi ce. def file

mat ri x_val ues Parameter matrix. The number of rows and columns
of the matrix must be the same as specified in the
devi ce. def file. Rows are entered one line at a
time with columns separated by spaces.
If a parameter as defined in devi ce. def isnot assigned a value, then the default

values specifiedindevi ce. def isused.
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4.3.3.3DEVI CE: STATE

The STATE subordinate command assigns an initial value to a state of the device
and must be entered in the following format:

STATE St ate_Nane Val ue
where:
St at e_Nane State Name from devi ce. def file.
Val ue Initial value of state.

If a state as defined in devi ce. def is not assigned a value, then the default
values specifiedindevi ce. def isused.
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4.3.41 NCLUDE

| NCLUDE is aways a single-line command. The command must be entered in the
following format:

| NCLUDE Fil e_Nane
where:
Fi | e_Nanme Name of thefile to include.

The contents of the included file are inserted at the location of the | NCLUDE
command.

4.3.5 NOCDE

NODE is aways a multi-line command. The command must be entered in the
following format:

NCDE Node_Nbr

where:

Node Nbr Serial Number of the node.

The subordinate commands for the NODE command are:

ERROR Node Error Levels

GM N Specify node G, vaue
NAME Assign a name to the node
RM N Specify node R, value
SCALE Specify node scaling factors

The last line of the command group must begin with the key-word END
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4.3.5.1 NODE: ERROR

The ERROR subordinate command determines for nonlinear blocks, the maximum
eguation errors and variable corrections which are permissible. These values override the
default values. When the conituation parameter equals 1, ERROR EQN KCL is the
maximum error for the node KCL eqution and ERROR EQN POT is the maximum error
for the potential difference equations. Likewise when the continuation parameter equals
1, ERROR VAR NODE is the maximum correction the node potential and ERROR VAR
FLOW s the maximum correction to an import flow variable. The ERROR MJULT
subordinate commands of the DEFAULT command are multipliers to the above limits for
continuation parameters less than 1.

Command Description MATLAB Variable
ERROR EQON KCL Val ue Maximum KCL Equation sys_kcl _err?
Error
ERROR EQN POT Val ue Maximum Potential sys_var _err?

Difference Error

ERROR VAR NODE Val ue Maximum correction to sys nd_err?
Node Potential

ERROR VAR FLOW Val ue Maximum correction to sys fv_err?
Import Flow Variables
attached to this node

Note 1: sys_xxx_err are actually arrays containing for each equation or variable, either
the default value or the overriding value specified here.

4.3.52NODE: GM N

The GM N subordinate command defines the value for G;,,. G, IS used to modify
the KCL equation to help prevent singular systems. G,,, should normally be set to O
unless asingularity problem exists. The value for G, overrides the default value.

Command Description MATLAB Variable
GM N Val ue Leakage Conductance to O sys_Grin*
Potential

Note 1. sys_Gri n isactually an array containing the value for G,,,, for each node: either
the default value or the overriding value specified here.
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4.3.5.3 NODE: NAME

The NAME subordinate command

Command Description MATLAB Variable
NAME Node Nane Name of the Node sys_node_nane’

The node name is only used to associate the node serial number to a more
understandable label. The node name is optional and does not affect computation in any

way.

Note 1: sys_node_nane isactually an array containing the names of all the nodes.

4.3.54NODE: RM N

The RM N subordinate command defines the node value for R.,;,. R, IS used to
modify the Potential Difference equations to help prevent singular systems. R, should
normally be set to O unless a singularity problem exists. The value for R, overrides the
default value.

Command Description MATLAB Variable
RM N Val ue Series Resistance for Export sys_Rni n*
Potentials

Note 1. sys_Rmi n is actually an array containing the value for R, for each node: either
the default value or the overriding value specified here.

4.3.5.5NODE: SCALE

The SCALE subordinate command specifies the node scaling parameters for the
potential and flow variables. The scaling parameters override the default values.

Command Description MATLAB Variable
SCALE POTENTI AL Val ue Scaling factor for Node sys_pot _scal et
Potential
SCALE FLOW Vval ue Node scaling factor for Flow sys_fl ow _scal e!
Variables

Note 1: sys_pot _scal e and sys_f | ow_scal e are actually arrays containing the scaling
factors for each node: either the default values or the overriding values specified
here.
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436 Tl VE

If TI MVE is specified without any arguments, the command is interpreted as a
multi-line command. Each of the following lines should contain one of the subordinate
commands listed below. The last line for the section should begin with the key-word END.

If TI ME is specified with arguments, the arguments should consist of one of the
subordinate commands listed below. A single line command does not have an END
keyword associated with it.

The subordinate commands for the TI ME command are:

BREAK Insert Break Point

DT Time Increment Control

FI NI SH Ending Time of Simulation
START Starting Time of Simulation

4.3.6.1TlI ME: BREAK

The BREAK subordinate command inserts a simulation break point which forces a
waveform boundary to occur at the designated time. Bracketing intervals in which a
discontinuity will occur with breakpoints can reduce the computational effort required by
WAVESIM.

Command Description MATLAB Variable
BREAK Ti e Break Point time sh_bp*
sb_bp_nbr

Note 1: sb_bp is actualy an array of break pointsin chronological order. sb_bp_nbr is
the number of break points.
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43.62TI Me: DT

The DT subordinate command controls the waveform interval.

Command Description MATLAB Variable
DT M N Val ue Minimum Waveform sb_dt _nin
I ncrement
DT MAX Val ue Maximum Waveform sb_dt _nmax
I ncrement
DT OPTI MUM Val ue Optimum Waveform sb_dt _opti num
I ncrement
DT I NI TI AL Val ue Initial Waveform Increment sb_dt _init
DT AVE Val ue Minimum Time Interval of sb_dt _ave

Interest (Averaging Interval)

If the time interval is less than DT OPTI MUM the number of coefficients is less
then the maximum and a block does not converge, the number of coefficientsis increased
for the next iteration. Otherwise, if the block does not converge the time interval is
reduced.

DT AVE isthe minimum time interval of interest and is used by devices to smooth
their export waveforms or to move discontinuity boundaries.

4.3.63TI ME: FI NI SH

The FI NI SH subordinate command specifies the ending time of the simulation.

Command Description MATLAB Variable
TI ME FI NI SH Val ue Ending Time of Smulation t1

4364 Tl ME: START

The START subordinate command specifies the beginning time of the simulation.

Command Description MATLAB Variable
TI ME START Val ue Starting Time of Simulation t 0
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4.4 Device Definition File Specification

The device definition file devi ce. def contains the definitions of the device types
which can be specified inaWAVESIM Input File. The basic characteristics of thefile are:

1.
2.
3.

o N o u

ASC I text files
Lines beginning with % # or ! areignored. Empty lines are ignored as well.

Data lines can be continued on the following line if the last charactersin the line
are... or\.

Commands al begin with a key-word. Key-words are case insensitive and
usually can be truncated to three letters unless a conflict with another key-word
exists.

Commands and their arguments may be separated by either spaces or tabs.
The contents of other files can be incorporated by using the | NCLUDE command.
Single Line Commands have data arguments entered on only one line.

Multiple Line Commands consist of groups of subordinate commands. The group
must end with a line beginning with the key-word END.
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Exampledevi ce. def File

% .
Oé) devi ce. def

% debug init_devices
debug read_devi ce_def

deV| ce RESI STOR

Term nal 1 Pot V1 [ nport
Termnal 1 Fl ow 11 ort
Term nal 2 Pot V2 | nport
Term nal 2 Fl ow |2 ort
Parameter R le-15

Functi on resi stor

Str UCIBEL)”aI Jacobi an Al l

DD
end
end
%
devi ce | NDUCTOR
Term nal 1 Pot V1 Inp

ort
Terminal 1 Flow |1 Export
Term nal 2 Pot V2 L nport
Termnal 2 Flow |2 Export
Parameter L le-15
Functi on i nduct or
Strucﬁtjral Jacobi an All
LL

end

end

deV| ce CAPACI TOR
Term nal 1 Pot V1 Export
Termnal 1 Flow |1 Export
Term nal 2 Pot V2 | nport
Terminal 2 Flow 12 Inport
Parameter C le-15
Functi on capaci t or
Str uclttjral Jacobi an All

0D

end

end

%
devi ce VDC SOURCE

Termnal 1 Pot V1 Export
Termnal 1 Flow |1 Export
Term nal 2 Pot V2 | nport
Termnal 2 Flow 12 Inport

Paranmeter VS 1.0
Functi on vdc_src
Str ucltéjral Jacobi an Al l
oD
end
end

%

devi ce REFERENCE
Term nal Ghd Pot VO Export
Termnal Gid Flow IO I nport
Par ameter  Vref
Str ucé ural Jacobi an ALL

end
end
% o
% i nclude | oad fl ow definitions
i ncl ude | oadf | ow. def
%
% i ncl ude r ot

i ncl ude powersys

% .

% include other circuit el enents
i ncl ude circ_el mdef

ati ng ]gmchi nery | ED Model s
e



4.4.1 DEBUG

The DEBUG command is always a single-line command and results in the display of
debug information for a specified routine during the execution of WAVESIM.

Command Description
DEBUG i ni t _devi ces Print Info on Initial System Parameters

DEBUG r ead_devi ce_def PrintInfo onwhat isread fromdevi ce. def

4.4.2 DEVI CE

DEVI CE is always a multi-line command. The command must be entered in the
following format:

DEVI CE Devi ce_Type
where:
Devi ce_Type Device Type Name (must be unique)

The Device Type Name is used to correlate a given device in an input file with the
properties of the device as specified here. The subordinate commands for DEVI CE are:

TERM NAL Specify Terminal Variable Properties
PARAVETER Specify Parameters

STATE Specify States

FUNCTI ON Specify MATLAB function

STRUCTURAL JACOBI AN Specify Structural Jacobian

Thelast line of the command group must begin with the key-word END
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4421 DEVI CE: TERM NAL

The TERM NAL subordinate command defines the properties of the variables
associated with a terminal. If the Terminal is a norma terminal, both the flow and
potential variables need definitions. Flow variables also require a KCL group number
KCL which corresponds to the group of terminals for which KCL can be written internally
to the device. If the flow variable does not belong to a KCL group, its value should be O.
Variable are | MPORT is they are a resource to the device and are EXPORT if they are a
product of the device. The total number of export variables associated with normal nodes
must equal the total number of import variables associated with normal nodes.

Normal Node potentials are defined by either
TERM NAL Ter m nal _Nanme POTENTI AL Vari abl e_Nanme EXPORT
or

TERM NAL Ter m nal _Nanme POTENTI AL Vari abl e_Nanme | MPORT

Normal Node flows are defined by either
TERM NAL Term nal _Nanme FLOW Vari abl e_Nane EXPORT KCL
or

TERM NAL Term nal _Nanme FLOW Vari abl e_Nane | MPORT KCL

Information Node potentials are defined by either
TERM NAL Ter m nal _Nanme | NFORVATI ON Vari abl e_Nanme EXPORT
or

TERM NAL Ter m nal _Nanme | NFORMVATI ON Vari abl e_Nanme | MPORT

Where
Ter m nal _Nane One word name for Terminal
Vari abl e_Nane Oneword namefor Variable
KCL KCL Group Number (0 if none)
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4.42.2DEVI CE: PARAMETER

The PARAMETER subordinate command defines the parameters of the device and
optionally, declares the default values for the parameters. Parameters can either be single
valued or amatrix. A single valued parameter is defined by:

PARAMETER Par anmet er _Nane Def aul t _Val ue
where

Par amet er _Nane One word name for Parameter

Def aul t _Val ue Optional Default Value for Parameter
Matrix parameters for which which no default values are provided are defined by:

PARAVETER Par anet er _Name MATRI X Nbr _Row Nbr _Col

where
Nor _Row Number of rowsin Matrix
0 should never be used
-1 indicates variable dimensioned
Nor _Col Number of columnsin Matrix
0 should never be used

-1 indicates variable dimensioned

Matrix parameters for which which default values are provided are defined by:
PARAMETER Par aneter _Nane MATRI X Nor_Row Nbr_Col

DEFAULT
Defaul t _Matrix
END
where
Default _Matrix Default Matrix values, Each matrix row should
be entered one line a a time with columns
separated by spaces.
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4423 DEVI CE: STATE

The STATE subordinate command defines the states of the device and optionaly,
declares the default initial values for the states. States are defined by:

STATE State_Nane Defaul t _Val ue
where
St at e_Nane Oneword name for State

Def aul t _Val ue Optional Default Initial Value for State
44.2.4 DEVI CE: FUNCTI ON

The FUNCTI ON subordinate command is mandatory and defines the MATLAB
function which defines the device constitutive equations. The MATLAB function is
specified by:

FUNCTI ON MATLAB_Functi on

where

MATLAB_Functi on MATLAB Function name
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4.425DEVI CE: STRUCTURAL JACOBI AN

The STRUCTURAL JACOBI AN subordinate command defines the structura
jacobian matrix of the device for 1 or for al of the waveform types. The structura
jacobian for al waveform typesis specified by:

STRUCTURAL JACOBI AN ALL
Structural _Jacobi an
END

where

Structural Jacobi an Structura Jacobian Matrix. The Rows
correspond to Export Variables ordered
according to the order of definition. Similarly,
the Columns correspond to Import Variables
ordered according to the order of definition.
The elements are Structural Jacobian Codes
detailed below.

The structural jacobian for one particular waveform type is specified by:

STRUCTURAL JACOBI AN Wavef orm Type
St ructural _Jacobi an
END

where

Wavef orm Type Waveform Type Code the structural jacobian is
defined for
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Structural Jacobian Codes

Code |Typeof Matrix

0 Zero Matrix (all elements are always zero)

I |dentity Matrix (always the identity matrix)

D Diagona Matrix (always alinear main diagona matrix)

L Linear Matrix (The elements are always constant)

A Nonlinear AC Matrix (see Note 1)

N Nonlinear Matrix (The elements may not be constants)

U Unknown (The dependence is unknown (treat as nonlinear))

Note 1. An AC Matrix is one for which the constant component of the export variable
depends only on the constant component of the import variable. The other
components of the export variable can not depend on the constant component of the
import variable but are not restricted in any other way.

Waveform Type Codes

Waveform Type Code
Undefined 0
Data Series 1

Fourier Series 2
Legendre Series 3
Polynomials 4
Matlab Polynomials 5
Chebyshev Series 6
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4.4.3 | NCLUDE

| NCLUDE is aways a single-line command. The command must be entered in the
following format:

| NCLUDE Fil e_Nane
where:
Fi | e_Nanme Name of thefile to include.

The contents of the included file are inserted at the location of the | NCLUDE
command.
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4.5 Adding devices

Adding New devices to WAVESIM requires the creation of a MATLAB M-file
defining the device constitutive equations and the addition of an entry in thedevi ce. def
file.

45.1MATLAB M-FILE

Creating a MATLAB M-FILE for generating a new device requires adherence to a
strict function argument list format. The following header indicates the format required by
WAVESIM:

function [e,jacob,sl,tt1]=function’(stype,i, par, npar1? npar2? s0,tt, al pha)
%

% FUNCTI ON

%

% VERSION 2.5 of 19 April 1991

% (C) Copyright 1990, 1991 by Norbert H Doerry

%

% [e , jacob, s1, ttl] = function(stype,i,par,s0,tt,al pha)

%

% FUNCTI ON creates the values and jacobian matrix for a FUNCTI ON
%

%

% stype = 1 data points

% = 2 fourier series

% = 3 legendre series

% = 4 pol ynom al

% = 5 MATLAB Pol ynom al s

% = 6 chebyshev series

%

% [ =[il1i2 ...] where

% i1, i2, ... are colum vectors of inmport variables
%

% par =[pl p2 ...] where

% pl = paraneter_1

% p2 = paraneter_2

%

%

% nmparl = matri x paraneter paraneter_ M

% npar2 = matri x paraenter paraneter_ M

%

% s0O =[S0_1 S0 2 ...] where

% SO 1 = state 1 value at tO
% SO 2 = state 2 value at tO
%

%

% tt = [tO t1l dtave] where

% to = initial time of the interval

% tl = final tine of the interval

% dtave = averaging increnent

%

% al pha = continuation paraneter

%
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% e =[el e2 ...] where

% el, e2, ... are columm vectors of export variabl es
%

%  jacob = Jacobian matrix of e with respect to i

%

% sl =[S1.1S1 2 ...] where

% S1 1 = state 1 value at t1l

% S1 2 = state 2 value at t1l

%

%

%

% ttl = [ntl ntt] where

% ntl = recomended reconputation time this interval
% ntt = recommended ending tine next interval

%

Note 1: f unct i on isthe name of the function defining the device. The MATLAB M-FILE
should becaled f uncti on. m

Note 2: npar 1, npar 2, etc. are only specified if the device as defined in devi ce. def
has matrix parameters.
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fun

dt
%
ttl
%
R =
%
sl
%
vl
v2
%
il
i 2
%
%

%
%
i
%

Example MATLAB M-File

ction [e , jacob , sl1, ttl] = resistor(stype,i,par,sO,tt, al pha)
RESI STOR

VERSION 1,6 of 25 February 1991
(C) Copyright 1990,1991 by Norbert H. Doerry
[e , jacob, s1, ttl] = resistor(stype,i,par,sO,tt, al pha)

resistor creates the values and jacobian matrix for a resistor

stype = 1 data points
= 2 fourier series
= 3 |l egendre series
= 4 polynom al
i = [vl v2] where vl and v2 are colum vectors
pgr = [R] where R is the resistance
S =
tt = 10t1 at] . .
t0 =’nitial time of the interval
t1 = final time of the interval
dt . = averaging tine interval
al pha = continuation paraneter
e =[11i2] where il and i2 are colum vectors
j%COb = Jacobian matrix of e with respect to
S =
ttl = [ntl ntt] where ) )
nt1l reconmended reconputation tinme this interval
ntt reconmended ending time next interval
structural jacobian
DD
DD
size(i);
) =1[1;
= tt(1);
= tt(2);
= tt(3);
=[tl tO];
par(1);
= [1;
=i(:,1);
=i(:,2);
= (vl - v2) /| R
=- i1
=[il1li2];
= eye(n);
ob=[1ii / R-ii / R; -1ii [/ Rii Il R1J;

j ac
%
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45.2 devi ce. def File

A DEVI CE entry must be made in the devi ce. def file as described in a previous
section. Hereisan example of the entry made for the resistor:

%
DEVI CE RESI STOR
%
TERM NAL 1 POTENTI AL V1 | MPORT

TERM NAL 1 FLOW Il EXPORT 1
TERM NAL 2 POTENTI AL V2 | MPORT
TERM NAL 2 FLOW |2 EXPORT 1

PARAMETER R 1le- 15
FUNCTI ON r esi st or
STRUCTURAL JACOBI AN ALL
DD
DD
END
END

Note: a device can be have multiple entries in devi ce. def to reflect different
default state initial values and default parameter values. For example, one may desire to
create amodel of a 1000 ohm resistor:

%
DEVI CE 1K_RESI STOR
%
TERM NAL 1 POTENTI AL V1 | MPORT

TERM NAL 1 FLOW Il EXPORT 1
TERM NAL 2 POTENTI AL V2 | MPORT
TERM NAL 2 FLOW |2 EXPORT 1

PARAMETER R 1000
FUNCTI ON r esi st or
STRUCTURAL JACOBI AN ALL
DD
DD
END
END

In this manner, one can develop devices which reflect the specific operating
parameter of a particular model. A Gas Turbine model for example, could be caled
GI_501K-17 and have al the parameters prespecified for an Allison 501K-17 Gas
Turbine.
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4.6 Adding Waveform Types

Adding a new waveform type requires:
1. Assignment of awaveform type code.

2. Writing MATLAB M-File functions for converting to and from the other
waveform types.

3. Modification of wconvert. m

4.  Writing MATLAB M-FILE functions for accomplishing the waveform
operations required by the devices

5. Modificaiton of wf unct i on. mfiles
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4.6.1 Conversion M-Files

Here is an example of a conversion M-File for converting a Legendre Series into a
Polynomial:

Eunction [poly, jacob] = leg _poly(leg,n)

?i[poly, jacob] = leg_poly(leg,n)

0é(;l\lorbert H Doerry

%;Revision 1.1 21 Novenber 1990

% LEG POLY converts a Legendre Series to a Normal Pol ynom al

% | eg = vector of Legendre Series Coefficients in ascending
% or der
% n = size of polynomial array to create
%
% poly = answer
% jacob = partial derivative of poly wt |eg
%
nl = size(leqg);
nl(2) =1[];
%
if n<=0
n2 = nl;
el se
n2 = n,
end

%
% bui l d the jacobian
%
jacob = zeros(n2,nl);
%

if nl > n2
nn = n2;
el se
nn = nl;
end

%

for i=1:nn
jacob(1:i,i) = legendre(i-1);
end

%

poly = jacob * |eg;

%

%

%
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Note that a jacobian matrix must be specified for each result with respect to each

argument. Here is the current version of wconvert . mwhich is the norma method for
accessing the conversion routines:

&unction [w2, jacob] = wconvert(wl, n,sl, s2)
0

%
i f

WCONVERT

VERSION 1,3 of 26 March 1991
(C) Copyright 1990.1991 by Norbert H Doerry

[w2, jacob] = wconvert(wl, n,sl, s2)

WCONVERT converts a waveform of agne type to another type and
al so returns the jacobian of the conversion

w = i nput waveform
n = nunber of points in output waveform
sl = type of input waveform
= 1 data points
= 2 fourier series
= 3 | egendre series
= 4 polynom al ] )
= 5 for matlab pol ynom al (not inplenmented yet)
= 6 chebyshev series
s2 = type of output waveform
= size(wl);
(2 =t
n<»:1
n2 = nil;
se
n2 n,
d
sl <1] s1>6
’Hllegal wavef orm type
S
aeturm
s2 <1 ] s2 >6
’5llegal wavef orm type
S
return;
d
sl == 5 s2 ==
’5llegal wavef orm type
S
return;
d
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dat adat a(wl, n2);

dat af our (wl, n2);

data_l eg(wl, n2);

dat apol y(wl, n2);

dat acheb(wl, n2);

fourdat a(wil, n2);

fourfour(wl, n2);

four_leg(wl, n2);

fourpol y(wl, n2);

| eg_dat a(wl, n2);

2
= leg_four(wl, n2);

3
= leg_l eg(wl, n2);

| eg_pol y(wl, n2);

= | eg_cheb(wl, n2);

= pol ydat a(wl, n2);

2

= pol yfour (wl, n2);
3

= poly_l eg(wl, n2);

4
= pol ypol y(wl, n2);

= pol ycheb(wl, n2);

-143-



-0

chebdat a(wl, n2);

BBF?PSL?EM 2

cheb_l eg(wl, n2);

chebpol y(wl, n2);

leg |l eg(wl, n2);
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4.6.2 Waveform Functions

Waveform functions are defined in a similar manner to the conversion files. Hereis
an example of aMATLAB M-Filefor integrating a polynomial:

&unction [p2 , jacob] = poly_int(pl,n,c)
0

%

gi [p2 , jacob] = poly_int(pl,n,c)

0
% Nor bert H. Doerrg
%)REVISIOH 1.0 of Decenber 1990

%

% pl = input polynom al

% n = nunber of "points in p2
%) c = integration constant

0

% p2 = integeral of pl _
%@ jacob = partial of p2 with respect to pl
0

%

0
% PCOLY_INT integrates a given polynonm al and converts the
%6 resuft to another polyhom al of size n

0

9% i f 1)
nl = size(pl);
ni(2) =

%() [

% Error checking

%

if n<2
n2 = nl;

el se
n2 = n

end

%

if nl <
p2 = [];
return;
end

0

$>calculate the integration matrix
0

Ll = zeros(nl+1,nl);

Yo

for i. =1 : nl .
JA(i+1,i) =11/ i;
end

% :

Y% xx is (-1)"(n-1)

%

XX = ones(1,n2);

for i =2 : n ]
xx(1,i) = - xx(1,i-1);

end

%
%) calculate the indefinite integral of the pol ynom al

pIl=i1* pl

%>c0nvert to a polynom al of the right size
0

[R2,j2] = polypoly(pil, n2);

g/§=J£*Jl;

% convert to a definite integral by adding the constant of

% i ntegration and subtracting the value of the indefinite
%) integral at x = -1
k40

jacob =j3 - Exx * 3 ; zer
p2(1,1) = p2(1,1) -"xx * |3
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Normally, auser would call w_i nt to integrate a waveform:

&unction [w2 , jacob] = w.int(wl, n,sl,c)
0

%)WLINT
0
% Version 1,2 of 19 ril 1991

%)(C) Copyright 1991 by Norbert H. Doerry

@g [w2, jacob] = w_.int(wl,n,sl,c)

% WINT integrates a waveform and returns tqe r%ﬁylt
eng

%) the same type but of possible different
0
% wl = input waveform
% n = nunber of points in output waveform
% sl = type of waveform
% = 1 data points,
% = 2 fourier series
% = 3 |l egendre series
% = 4 polynom al ]
% = 5 tor mat| ab pol ynom al
%) = 6 for chebyshev Series
0
%) ¢ = constant of integration
0
% w2 = waveformwhich is integral of wl
% jacob = jacobian of w2 with réspect to wl
n%(;)sizFfmﬂ);
n = ;
if nn<1
n2 = nl;
el se
n2 = n;
gnd
0
%bcheck for illegal waveformtype

0
if s1<1]| sl >6
’Hllegal wavef orm type
s

return;
end

if sl ==1 .
. [w2 , jacob] = data_int(wl, n2,c);
0

elseif sl == 2

y [w2 , jacob] = four_int(wl, n2,c);
0
elseif s1 == 3
w3, j3] = IeP_poIY wl, nl);
w4, 14] = poly_int(w3,n2,c);
w2, 2] = polyZl eg{wd, n2j;
jacob = j2 * j4™* |3;
%
elseif sl == 4 ]
y [w2 , jacob] = poly_int(wl, n2,c);
0
S Peh 317 ol ypol y(wl, n1
, = 0 yNl),
VRER: Ve
) = po yNZ)
acobJ: j2 P j%ny Y ;
%
elseif s1 == 6
w3, j3] = chebpoIY wl, nl);
w4, 14] = poly_int(w3,n2,c);
w2, ]2] = pol ycheb(wd, n2j;
acob = j2 * j4a * |3;
%
el se
"error’
end
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Notice how the waveform conversion routines are used to implement waveform
operations which have not yet been defined for a given waveform type.

- 147 -



Chapter 5 Simulation Results

As a demonstration of the capabilities of WAVESIM, the results of three simulations
are presented here. While these simulations are relatively simple, they include the important
features of more difficult simulations, yet are not so complicated as to be unverifiable. The
first simulation of a simple electical circuit containing only linear devices verifies the ability
of WAVESIM to construct a viable system and limit truncation error by controlling the
waveform interval and number of coefficients. The second simulation increases the
complexity by including a nonlinear device and provides a good test of the Newton-Raphson
solver. The third and final ssimulation demonstrates the use of a continuation parameter to
improve the region of convergence of the simulation.
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5.1 Linear Electrical Circuit

To demonstrate WAVESIM’s ability to solve linear circuit problems, the circuit
shown in figure 5.1-1 was simulated. Initially, both capacitors have zero charge and the
inductor currents are zero as well. The transients of the capacitor voltages and current are
shown in figure 5.1-2. The simulation was conducted using Legendre Series with the 20
second simulation time split up among 23 intervals. Eleven intervals were rejected due to
excessive truncation error.

Figure5.1-1: Linear Electrical Circuit: Schematic

D R1=.1 @ Re=1 ©)

The results shown in figure 5.1-2 are identical (to working precision) to an analytic
solution of the circuit.

Figure5.1-2: Linear Electrical Circuit: Simulation Results

rcrc.m using LEGENDRE SERIESn=7

System Variables

02} f

-04
0

time
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The input file specifying the systemis given by:
Input Filefor Linear Electrical Circuit

%

%rcrc.in

%

devi ce VDC_SOURCE Vs
TERM NAL 1
TERM NAL 2
PARAMETER VS
END

ROk

%

devi ce RESI STOR R1
TERM NAL 1
TERM NAL 2
PARAMETER R
END

ONEF

%

devi ce RESI STOR R2
TERM NAL 1
TERM NAL 2
PARAMETER R
END

R wnN

%

devi ce | NDUCTOR L1
TERM NAL 1
TERM NAL 2
PARAMETER L
END

RON

%

devi ce | NDUCTOR L2
TERM NAL 1
TERM NAL 2
PARAMETER L
END

oo w

%
devi ce CAPACI TOR C1

TERM NAL 1 2
TERM NAL 2 0
PARAMETER C 1.0
END

%

devi ce CAPACI TOR (C2
TERM NAL 1 3
TERM NAL 2 0
PARAMETER C 1.0
END

%

%

defaul t
Grin O
Rrin O

i mport NO
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error egn kcl 5e-3
error eqn pot 5e-3
error var node 5e-3
error var flow 5e-3
error mult kel 10.0
error mult pot 10.0
error mult node 10.0
error mult flow 10.0
max count 10

max int count 6

alpha init 1.0

alpha inc init .25
alpha inc mn .05

al pha inc max .50

di verge start 3

di verge max cnt 2

di verge error nult 10.0
wavef orm content max . 001
wavef orm content nbr 2
range max . 005

scal e potential 1.0
scale flow 1.0
stype 3

nbr coef 7

nbr coef mn 6

nbr coef max 14

nbr data 20
END

%

%

time
dt mn .01
dt max 2.0
dt opt .250
dt init .5
dt ave 0.0
start 0.0
finish 20.0
END

%

pl ot
potential Rl 2
node 3
flowC2 1
END

Figure 5.1-3 shows the time increment and number of coefficients used for each of the
intervals. Once the transients start to decay, the number of coefficients are decreased to the
minimum allowed.
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Figure5.1-3 Truncation Error Control

Interval Ending Time (sec) Number of
Coefficients
1 0.25 7
2 0.50 7
3 0.75 7
4 1.25 7
5 2.25 7
6 3.25 6
7 4.25 6
8 4.75 6
9 5.25 6
10 6.25 6
11 7.25 6
12 8.25 6
13 8.75 6
14 9.25 6
15 10.25 6
16 11.25 6
17 12.25 6
18 14.25 6
19 15.25 6
20 16.25 6
21 17.25 6
22 18.25 6
23 20.00 6
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5.2 Nonlinear Electrical Cir cuit

To demonstrate WAVESIM’s ability to solve nonlinear circuit problems, the circuit
shown in figure 5.2-1 was simulated. Initially, the inductor current is zero. As the inductor
current builds up, its voltage is clamped by the diode to one diode drop above 1 volt and its
current ramps up amost linearly. When the inductor voltage fals far enough to turn the
diode off, the current and voltage both show a normal exponential transient behavior.
Figure 5.2-2 shows the inductor voltage and current as a function of time.

Figure5.2-1 Nonlinear Electrical Circuit: Schematic
® Ri=1 @ DI @

Li=1
(*) Vs1=10 ven 1O

The results shown in figure 5.2-2 were calculated using Legendre Series over seven
time intervals. Five additional intervals were rgjected due to excessive truncation error.
These results match closely an analytic solution to the circuit.
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Figure 5.2-2 Nonlinear Electrical Circuit: Simulation Results

rd.m using LEGENDRE SERIESn =7
10 . . . . .

,,,,,,,,,,,,,,

System Variables
(6}
Il

The input file specifying the systemis given by:
Input Filefor Nonlinear Electrical Circuit

%

%rd.in

%

devi ce VDC _SOURCE Vsl
TERM NAL 1 1
TERM NAL 2 0
PARAVETER VS 10.0

END
%

devi ce RESI STOR R1
TERM NAL 1 1
TERM NAL 2 2
PARAMETER R 1.0
END

%

devi ce | NDUCTOR L1
TERM NAL 1 2
TERM NAL 2 0
PARAMETER L 1.0

END

%

devi ce DI CDE1 D1
TERM NAL 1 2
TERM NAL 2 3
END

%

-154 -



devi ce VDC_SOURCE Vs2
TERM NAL 1 3
TERM NAL 2 0
PARAMETER VS 1.0

END

%
defaul t

%

time

%
pl ot

Grin O

Rrin O

rinport NO

check both

error egn kcl 5e-3
error eqn pot 5e-3
error var node 5e-3
error var flow 5e-3
error mult kel 10.0
error mult pot 10.0
error mult node 10.0
error mult flow 10.0
max count 10

max int count 6

alpha init 1.0

alpha inc init .25
alpha inc mn .05

al pha inc max .50

di verge start 3

di verge max cnt 2

di verge error nult 10.0
wavef orm content max . 001
wavef orm content nbr 2
range max . 005

scal e potential 1.0
scale flow 1.0
wtype 3

nbr coef 7

nbr coef mn 7

nbr coef max 10

nbr data 20
END

dt mn .01
dt max 5.0
dt opt .250
dt init 5
dt ave .01
start 0.0
finish 10.0
END

potential Rl 2
flow L1 1

END
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Figure5.2-3 Truncation Error Control

Interval Ending Time (sec) Number of
Coefficients

5.00
6.25
6.4063
6.7188
7.3438
8.5938
10.0

~NoOUAWNER
NENENENENENEN
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5.3 Nonlinear Mechanical System

To demonstrate the ability of WAVESIM to use continuation parameters in simulating
nonlinear mechanical systems, a mechanical power train was modelled. The acceleration
characteristic of a ship was determined for a propeller rotating at a constant speed. Figure
5.3-1 shows a schematic diagram of the system.

Figure 5.3-1 Nonlinear M echanical System: Schematic

Wm u
A\ c
' F

m

The propeller model is described in Appendix F-8 while the ship dynamics model is
described in Appendix F-9. Figure 5.3-2 shows the parametric curves used for C;() and
Co(). Thisdataisfor athree bladed propeller with an expanded arearatio of .5 and an H/D
ratio of .6 [81].

Figure 5.3-3 shows the Residual drag coefficient used in the ship dynamics model.

This data is from the Taylor Standard Series for a hull with beam to draft ratio of 3.0,
Prismatic Coefficient (C,) of .68, and Volumetric coefficient of 0.002. The Frictional Drag

Coeffient was calculated using the standard ITTC Line:

075

C PSP —
R) (logi(R:) —2)

-157 -



Figure 5.3-2 Nonlinear M echanical System: Propeller Characteristics
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Figure 5.3-3 Nonlinear M echanical System: Drag Coefficient
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The input file specifying the systemis given by:
Input Filefor Nonlinear Mechanical System

%

% shi pnol.in

%

% Model of a prime nover attached to prop going to the sea
%

devi ce NODE_REF GT1

TERMNAL 1 1
PARAVETER Vref 5.0
END

%

devi ce PROP1 prop
TERM NAL SHAFT 1
TERM NAL WATER 2
PARAMETER D 10.0
PARAMETER w 0.0

end

%
% par aneters are rough ones from Sue B Gai
%
devi ce SHI PDYNL1 ship
TERM NAL WATER 2
PARAMETER L 100
PARAMETER A 3300
PARAMETER M 15000000
PARAMETER Madd 1. 05
PARAMETER Ca 0. 0004

STATE Us O
end
%
Node 1
SCALE POTENTI AL 1
SCALE FLOW le-4
NAME Propel | er _Shaft
Grin 1
END
Node 2
SCALE POTENTI AL 1
SCALE FLOW le-4
NAME Hydr odynami c_U force
END
%
def aul t
Grin O
Rmin O
rinport NO
check eqgn
error egn kcl le-2

error eqn pot le-2
error var node 1le-2
error var flow 1le-2
error mult kel 10.0
error mult pot 10.0
error mult node 10.0
error mult flow 10.0
max count 10
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max int count 6

alpha init 0.5

alpha inc init .25
alpha inc mn .05

al pha inc max .50

di verge start 3

di verge max cnt 2

di verge error nult 10.0
wavef orm content max . 005
wavef orm content nbr 2
range max . 005

scal e potential 1.0
scal e fl ow 1.0
stype 3

nbr coef 7

nbr coef mn 6

nbr coef max 10

nbr data 20
END

%

time
dt mn .25
dt max 5.0
dt opt 1.0
dt init 2.0
dt ave 0.0
start 0.0
finish 7.25
END

%

pl ot

% node 1 converted to RPM
% node 2 converted to Knots (nore or |ess)
%

node 1 9.5492966

node 2 1.8

flow ship WATER 1le-5

flow prop SHAFT le-5

END

The results of the simulation using Legendre Series are shown in figure 5.3-4. The
simulation was broken into 24 intervals shown in figure 5.3-5. An additional 25 intervals
were rejected due to excessive truncation error. For each iteration, the continuation
parameter was initialy set to 0.5. This value helped assure the initial value of 0 was within
the convergence region of the nonlinear blocks. While 0.5 was suitable for most iterations,
severa required the continuation parameter be decremented further to achieve convergence.

- 160 -



Figure 5.3-4 Nonlinear M echanical System: Simulation Results
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As expected, the force on the propeller is greatest during the acceleration of the ship.
As the ship accelerates, the increased forward velocity on the ship results in smaller torques
and forces. In redlity it is doubtful the motor would be capable of maintaining a constant
RPM during the acceleration phase.
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Figure5.3-5 Truncation Error Control

Interval Ending Time (sec) Number of
Coefficients

1 1 7
2 15 8
3 1.75 10
4 2.25 10
5 25 10
6 2.75 10
7 3.0 10
8 3.25 10
9 35 10
10 3.75 10
11 4.0 10
12 4.25 10
13 45 10
14 4.75 10
15 5.0 10
16 5.25 10
17 55 10
18 5.75 10
19 6.0 10
20 6.25 10
21 6.5 10
22 6.75 10
23 7 10
24 7.25 10
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Chapter 6 Conclusions

In its present form, WAVESIM s ideally suited for testing numerical algorithms.
While it is capable of simulating large systems, the interpretive nature of MATLAB is not
numerically efficient enough for serious simulations. Careful development of a simulation
environment based on the techniques explored in WAVESIM should prove effective in
solving tightly coupled multirate systems of lumped parameter models.

The simulation environment described in this thesis should be considered a framework
for future developments. Many improvements are possible and desirable. In particular, the
following areas need further attention:

Truncation Error Control

The present method for controlling truncation error is heuristic and should be
examined for improvement. Truncation Error propagation should be examined and
given atheoretical basis.

Discontinuity Time Prediction

The accuracy of the methods used in WAVESIM depend partly on the ability to
predict discontinuities and force them to occur on time interval boundaries. The
methods used in current models are crude and should be replaced with more robust and
accurate methods.

Stability Analysis

WAVESIM presently does not perform any stability analysis. Since WAVESIM
abandons the standard state space representation of the system, determining the
eigenstructure of the system is not easy. A stability measure based on the
characteristics of individual devices would fit well with the structure of WAVESIM
and would be quite useful in the design of distributed controls.

Smoothing Operation

The smoothing operator for removing the effects of high frequency
discontinuities needs to be examined to improve its efficiency. How long to make the
smoothing interval is a question which has not been satisfactorily answered.

Partitioning and Relaxation
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The approach WAVESIM uses for developing the set of system equations is
ideally suited for use with relaxation methods if the system is weakly coupled. An
extension to the structural Jacobian to include matrix norms would greatly simply the
task of partitioning the system into a set of weakly coupled blocks which internally are
strongly coupled. Each individual block would be solved using Newton-Raphson with
the system solved using a relaxation technique. Unfortunately, the process of
constructing a system matrix of norms from device matrix norms is presently not
possible because arithmetic operators for matrix norms have not been identified.

Overall, WAVESIM has been very successful in developing the algorithms for building
systems in terms of device functions, treating waveforms as an abstract data type, and
employing the structural Jacobian matrix to reduce the system into a sequence of smaller
blocks. Much work remains, but the foundation of a waveform based simulator capable of
handling tightly coupled multirate simulation problemsis contained within WAVESIM.
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Appendix A: Glossary

Block

Continuation
Parameter

Device

devi ce. def

Device Jacobian

Device Structural
Jacobian Matrix

Export Variable

A subset of a system’s equations and variables which must be solved
simultaneously. Blocks are organized into a sequence where
variables determined in a previous block may be used in following
blocks.

A technique to enlarge the convergence region of a nonlinear system
by using the solution to a linear system as the initial guess for the
solution of another system which is a combination of the linear and
nonlinear systems. The process is repeated with each iteration
increasing the nonlinear portion until the solution to the nonlinear
system is determined. The continuation parameter determines the
relative proportion of the nonlinear system: O for the linear system
and 1 for the desired nonlinear system.

A device is a mathematical model of a physical piece of equipment
comprising a system. Devices interact with one another through
interface variables which are associated with other device interface
variables through terminals connected at nodes. The equations
describing a given device type are specified in the device definition.
A given instance of a device also has associated parameters and
nodal connections.

A file for describing a device definition. Each device type has an
entry describing the device type name, terminas, states, parameters,
structural  Jacobian, and MATLAB M-File containing the
constitutive equations.

A matrix whose elements are the partial derivatives of the export
variables of adevice with respect to the device import variables.

A matrix describing the dependence of a device's export variable
with respect to the import variables. The dependence is specified by
a matrix whose elements are a code indicating if the dependence is
zero, identity, diagonal, linear, or nonlinear.

An interface variable (either a potential or flow variable) of adevice
which is explicitly defined by the device constitutive equations. A
device takes import variables as input and produces export variables.
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Flow Variable

Gmin

Import Variable

Information
Terminal

Interface Variable

KCL
KCL Equation

KCL Group
Number

MATLAB M-File

Newton-Raphson
Method

An interface variable (either an export or import variable) associated
with a normal termina of a device which corresponds to a quantity
satisfying Kirchhoff’s Current Law at nodes. Examples of flow
variables are currents, forces, and torques.

A modification to the KCL equations at a node corresponding to the
insertion of a conductance to the O potential. Used to prevent
singular systems.

An interface variable (either a potential or flow variable) of adevice
which is implicitly defined by the device constitutive equations. A
device takes import variables as input and produces export variables.

A terminal of a device having only a potential associated with it.
Used to convey energyless information between devices.

Variables through which devices communicate energy and
information transfer to other devices. Interface variables are
associated with terminals, can be classified as either flow or
potential variables and can be classified as either import or export
variables.

Kirchhoff’'s Current Law which states the sum of the flow variables
attached to anodeis zero.

Equates the sum of the flow variables attached to a node to zero.

If a subset of a device's flow variables add to zero by definition,
then the elements of such a subset have a device-unique nonzero
group number. Flow variables which do not belong to such a subset
have a0 KCL Group Number.

KCL Group Numbers are used to determine possible singular
systems due to linear dependence of system KCL equations.

Text files of MATLAB commands for creating new MATLAB
functions or executing scripts.

An iterative technique for solving systems of nonlinear equations
which uses the Jacobian Matrix to generate corrections to the system
variables.
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Node

Normal Terminal

Parameter

Potential
Difference
Equation

Potential Variable

I:amin

Smoothing
Operator

State

A connection point for connecting terminals of one or more devices.
If at least one normal terminal is attached, the node is a normal node
and a system KCL equation is written to equate the sum of al the
attached flow variables to zero. If only information terminals are
attached to a node, the node is an information node. All nodes have
an associated node potential.

A termina having both a potential and flow variable. Used to
simulate energy transfer between devices.

A variable which does not change throughout the simulation.
Usually refersto machine ratings, resistances, time constants, etc.

Each export potential variable in a system has an associated
potential difference equation equating to zero the difference between
the potential of the node to which the variable is attached and the
value of the export potential.

An interface variable (either an import or export variable) associated
with either a normal or information node. All of the potentia
variables attached to the same node are equal to the potential of the
node.

A modification to a potential difference equation corresponding to
the insertion of a series resistance. Used to prevent singular
systems.

A waveform operator for removing the high order waveform content
of its argument by returning a waveform which is the convolution of
the argument with a square pulse. The returned waveform is
effectively the local average of the argument waveform. The
smoothing operator removes unnecessary detail from a waveform
and improves the representation of the desired properties of the
waveform with fewer coefficients.

A state is a device variable whose value is retained between
waveform intervals. Constants of integration and device operating
modes are the most common uses of states.
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Structural Jacobian A code indicating the nature of an element of a Jacobian matrix:

Code

Subsystem

System

System Jacobian

System Structural
Jacobian Matrix

System Variable

Terminal

Waveform

Waveform Content

Zero Matrix

|dentity Matrix

Diagonal Matrix

Linear Matrix

Type A nonlinear Matrix
Nonlinear Matrix
Unknown

cz»r 0~ O

A subset of the devices of a system which are grouped together and
solved independently of other devices and subsystems. Subsystems
have not been implemented in WAVESIM.

A group of devices and subsystems and the nodes interconnected
them.

A matrix containing the partial derivatives of the system equations
with respect to the system variables.

A matrix describing the dependence of a system’s equations with
respect to the system variables. The dependence is specified by a
matrix whose elements are a code indicating if the dependence is
zero, identity, diagonal, linear, or nonlinear.

The set of system variables is composed of al the node potentials
and all the device import flow variables.

A modelling analogy to a physical attachment point on a device.
Normal terminals have an associated flow and potential variable and
are used to model the transfer of energy into and out of a device.
Information terminals have only a potential variable and are used to
convey information between devices.

A representation of a variable over a given time interval consisting
of a vector of coefficients and a waveform type indicator for
specifying how the coefficients should be interpreted. Common
waveform types are Legendre Series, Chebyshev Series,
Polynomials and Data Points.

The magnitude of a coefficient of a waveform divided by the square
root of the sum of all the waveform coefficients. The Waveform
Contents of the higher order coefficients are used to determine if the
truncation error is negligible.
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Waveform Type Anindicator specifying how the coefficients of the waveform vector
Indicator should be interpreted. Common waveform types are Legendre
Series, Chebyshev Series, Polynomials and Data Points.

WAVESIM A numerical algorithm development program incorporating the
systematic treatment of waveforms as a data type, the terminal
description of devices, and the use of structural Jacobians in system
reduction.
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Appendix B: Continuation Parameter Pitfalls

If used properly, continuation parameters can help enlargen the region of convergence
of an iterative scheme. This section will show how continuation parameters can fail due to
bifurcations of solutions.

Take for example, the following system of two equations and two unknowns
F(x,y) =0:

Fi(x,y)=y-(x’-x)=0
Fy(x,y)=y—-(Mx+B)=0

Initially, set M =0 and B = 1.875. From the following figure, it is obvious the solution
isthe intersection of the two curves and falls at the point (1.5,1.875).

Figure B-1: Solutiontoy=x3-xandy = 1.875

5.0

Nonlinear Solution

25 y =1.875

y=x3-x

-2.5

-5.0

To solve this system with a continuation parameter, we create a new function H(x,y,a)
which isformed by combining F(x,y) with alinear system G(x,y):

G(Xy)=y-(mx+b)=0

G x,y)=y—-(Mx+B)=0
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H(x,y,0) =aF(x,y)+(1-a)G(x,y)=0

The modeller now has the choice of selecting m and b. A natural choice would be a
linearization about a given point. If we linearize about x = 0, thevaluesarem =-1and b= 0.
The following figure shows the results of this selection:

Figure B-2: Continuation Method for m=-1 b=0 M=0 B=1.875

10

a=0 y= 1.875

y = a(C-x)+(1-a)(-x)

-10

ROOT LOCUSfory = 1.875 y = a(x"3-x) + (a-1)(-x)
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a X Root L ocus Points
y =a(’=x)+(1-a)(-x)
y =1.875
0 -1.8750
0.0100 10.8310 |-8.8820 -1.9490
0.0200 7.8686 -5.8222 -2.0464
0.0400 5.7569 -3.2569 -2.5000
0.0421 5.6274 -2.8637 -2.7637
0.0422 5.6214 -2.8107 - 0.0613i -2.8107 + 0.0613i
0.0600 4.8125 -2.4063 - 0.8387i -2.4063 + 0.8387i
0.1000 3.8553 -1.9277 - 1.0712i -1.9277 + 1.0712i
0.2000 2.8743 -1.4372 - 1.0937i -1.4372 + 1.0937i
0.4000 2.1609 -1.0804 - 1.0010i -1.0804 + 1.0010i
0.5000 1.9746 -0.9873 - 0.9614i -0.9873 + 0.9614i
0.7000 1.7263 -0.8632 - 0.8981i -0.8632 + 0.8981i
1.0000 1.5000 -0.7500 - 0.8292i -0.7500 + 0.8292i

Note the solution for a =0 is (-1.875,1.875) which is not very close to the desired
solution for a = 1. Furthermore, as a increases dlightly, it actually becomes dightly more
negative until the nonlinear curve no longer intersects the linear equation in the left hand
plane. At this point, the solution has a discontinuity and jumps into the right hand plane with
avalue for x much larger than the solution. The root locus for x asa goes from Oto 1 clearly
shows this. Hence for this selection of m and b, the use of the continuation parameter makes
thejob of solving the system tougher instead of easier.

If we choose different values for m and b, the situtation may change. Say for example,
we st m=1 and b=0. This selection appears to work well as can be seen with the
following figure:
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Figure B-3: Continuation Method for m=1 b=0 M=0 B=1.875

10

y=1.875

y = a(x3-x)+(1-a)x

a=1

-10 : : : : : : :

ROOT LOCUSfory = 1.875 y = a(x"3-x) + (a-1)(X)
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a X Root L ocus Points
y =a(x®-x) + (1-a)x
y =1.875
0 1.8750
0.0400 1.7891 -0.8945 - 5.0399i -0.8945 + 5.0399i
0.2000 1.6440 -0.8220 - 2.2421i -0.8220 + 2.2421i

0.5000 1.5536

-0.7768 - 1.3455i

-0.7768 + 1.3455i

1.0000 1.5000

-0.7500 - 0.8292i

-0.7500 + 0.8292i

The solution for a =0 is close to the solution and as a increases, it rapidly converges
on the desired solution (1.5,1.875).

We should not rgjoice however, because even this
selection can fail for other choices for M and B. For example, if M =2.5 and B = -3, the

following figure demonstrates a discontinuity in the solution path:

Figure B-4: Continuation Method for m=1 b=0 M=2.5 B=-3

10

y = a(x3-x)+(1-a)x

-10
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ROOT LOCUSfory = 2.5x-3 y = a(x"3-x) + (a1)(x)

-10 8
a X Root L ocus Points
y =a(x®-x)+ (1-a)x
y=25y-3
0 2.0000
0.0100 -13.2173 |11.1887 2.0286
0.0200 -9.6223 7.5604 2.0619
0.0400 -7.0779 49274 2.1505
0.0735 -5.4659 2.7706 2.6953
0.0736 -5.4628 2.7314 - 0.0326i 2.7314 + 0.0326i
0.0800 -5.2778 2.6389 - 0.3761i 2.6389 + 0.3761i
0.1000 -4.8192 2.4096 - 0.6471i 2.4096 + 0.6471i
0.3000 -3.1844 1.5922 - 0.7780i 1.5922 + 0.7780i
0.5000 -2.6891 1.3445 - 0.6507i 1.3445 + 0.6507i
1.0000 -2.2047 1.1024 - 0.3815i 1.1024 + 0.3815i
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The bottom line is that it may not be possible to develop a transformation function
whose solution vector is always continuous. Any information known as to the region where
the probable operating point lies should be used in directing the solution to that region. For
this example, if x is known to be constrained to the interval [-5 5] and M is known to be less
than 17.75 (.75°5% - 1 is the slope of the line tangent to y = x® - x and passing through (5,120)
) then y is also constrained to the interval [-120 120]. If we use as our linearizing function
the line connecting (-5,-120) and (5,120) it is clear the root locus will aso remain within the
constraints for any value of M or B meeting the constraints at o = 1:

y = a(x®—x) + (1 - a)24x

Figure B-5: Continuatin method for m=24 b=0 M=2.5 B=-3

10

y = a(x®>-x)+(1-a)24x

-10
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ROOT LOCUSfory = 2.5x-3 y = a(x"3-x) + (a-1)(24x)

a x Root L ocus Points

y = a(x® - x) + (1 - a)24x

y=25y-3

0 0.0789 -13.7847i 0.0789 +13.7847i -0.1395
0.1000 0.0789 -13.7847i 0.0789 +13.7847i -0.1579
0.2000 0.0909 - 9.0843i 0.0909 + 9.0843i -0.1817
0.3000 0.1070 - 6.8338i 0.1070 + 6.8338i -0.2141
0.4000 0.1301 - 5.3666i 0.1301 + 5.3666i -0.2603
0.5000 0.1657 - 4.2523i 0.1657 + 4.2523i -0.3313
0.6000 0.2265 - 3.3147i 0.2265 + 3.3147i -0.4530
0.7500 0.4476 - 2.0659i 0.4476 + 2.0659i -0.8952
0.8500 0.7291 - 1.3744i 0.7291 + 1.3744i -1.4582
0.9500 0.9945 - 0.7737i 0.9945 + 0.7737i -1.9890
1.0000 1.1024 - 0.3815i 1.1024 + 0.3815i -2.2047
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For this example it is actually quit easy to determine if a bifurcation will occur. At a
bifurcation, the x root locus points satisfy the following relationship:

(x-c)’(x-d)=0
x%+ (-d = 2¢c)x” + (c® + 2cd)x + (—c°d)

where c is the multiple root whose paths will deviate from the real x-axis and d is the
root staying on the x-axis. Now the actual equation defining the rootsis given by:

ax’+(L-a)m-a-M)x+(1L-a)b-B=0
Equating terms we get:

-d-2c=0

cz+20d=%((1—a)m—a—M)
—cfd=1((L-a)b-B
cd=_(1-a )

solving this system for ¢, d, and a, we get:

d=-2c

.
(1—a)m—a—M+3aWﬁ2:O

If one of the solutions for a is area number in the interval [0,1], then there will be a
bifurcation and possibly a discontinuity in the path. If two of the roots approach from +co
and - along the real axis and a solution for a exists in the interval [0,1], then there will
definitely be adiscontinuity in the solution path. If two roots appraoch from off the real axis,
combine at the bifurcation point, then travel in the +x and -x directions, there will be three
real solutions for x and the solution path will converge onto one of them. If there is no real
solution for a in the interval [0,1], then there will be no bifurcation, no discontinuity in the
solution path and the solution will be unique.
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Appendix C: Load Flow Example

The method for building systems can be applied to static simulations for determining
equilibrium points of systems. The traditional load flow is representative of this type of
problem. Figure C-1 shows a three bus load flow example consisting of four device types:
PV Generator, VD Generator (Slack Bus), PQ Load, and atransmission line.

Figure C-1: 3BusLoad Flow Example

T12
o AN -
T13 T23
L3
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C-1: Device Definitions

C-1.1: PV Generator

Interface Variables

Terminal Potential Variable Flow Variable (KCL Group) Type
VQ V (export) Q (import) (0) Normal
DP D (import) P (export) (0) Normal

The import X;.,, and export X, vectors are defined by:

i
i

Parameters
Pg Scheduled Generator Power
Vg Scheduled Generator Voltage
Equations
V=V,
P = -PG

Device Structural Jacobian

The device structural jacobian is given by:

g

The device jacobian is given by:

=¥

Device Jacobian
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C-1.2: VD Generator (Slack Bus)

Interface Variables

Terminal Potential Variable Flow Variable
VQ V (export) Q (import)
DP D (export) P (import)

The import X;.,, and export X, vectors are defined by:

el
g

Vg Scheduled Generator Voltage
Dg Scheduled Generator Angle

Parameters

Equations

V=V,
D = Dg

Device Structural Jacobian

The device structural jacobian is given by:

=5

Device Jacobian

The device jacobian is given by:

=¥
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C-1.3: PQ Load

Interface Variables

Terminal Potential Variable Flow Variable
VQ V (import) Q (export)
DP D (import) P (export)

The import X;.,, and export X, vectors are defined by:

-
{58

P, Scheduled Load Real Power
Q. Scheduled Load Reactive Power

Parameters

Equations

P=P,
Q=Q,
Device Structural Jacobian

The device structural jacobian is given by:

=5

The device jacobian is given by:

=5

Device Jacobian
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C-1.4: Transmission Line

Interface Variables

Terminal Potential Variable Flow Variable (KCL Group) Type
VQ1l V, (import) Q; (export) (0) Normal
DP1 D, (import) P, (export) (0) Normal
VQ2 V, (import) Q, (export) (0) Normal
DP2 D, (import) P, (export) (0) Normal

The import X;.,, and export X, vectors are defined by:

V.0
0
X = E31D
mp D‘/ZD
U
2[]
Q.0
0
Xo = H:)lD
P EQZE
2[]
Parameters
R Transmission Line resistance
X Transmission Line reactance
Equations
Obtain Y:
R
A=
RZ +x2
___ X
RZ +x2
Y =V/AZ+B?
D, = atan2(B,A)
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Calculate Side one current
l,r =V,Ycos(D, +D,)-V,Ycos(D,+D,)

I, =V,Ysin(D, +D,) - V,Ysin(D,+D,)

Calculate Side two current

Calculate real and imaginary parts of the voltages
Vi =V, cog(D,)
Vy =V;sin(D,)
Vor =V, c08D,)
V, =V,sin(D,)
Calculate the export variables (Powers)
P, =Virlig +Vyly
Qy=Virly +Vylg
P, =Vl +Vyly
Qy = ~Vigrly +Vylp
Device Structural Jacobian
N
NH
N
0
N

Zz2Zz 2z Zz
Zz2Zz 2z Zz
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Device Jacobian

Calculate the Partial derivatives of the voltages with respect to the import variables:

gzzzl‘m@ﬂ -V,sin(d,) 0 0]
:Z:p:[gn(Dl) V,cos(D,) 0 O
g:é:;:[‘) 0 cosD,) -V,sin(D,)]
:Z:p:[o 0 sin(D) V,cos(D,)]

Calculate the partials of the currents with respect to the import variables:

ol . .
R ~[YcogD,+D,) -YV,sn(D,+D,) -Ycos(D,+D,) YV,sin(D,+D,)]

mp

ol . .
6>§1| =[Ysin(D,+D,) YV,co8D,+D,) -Ysin(D,+D,) -YV,cos(D,+D,)]
mp

aximp aximp
aximp aximp
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Calculate the jacobian matrix

orly e Vi

] _Elm Iy Vir
oo B 0O 0 O
0 0 0 0
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C-2: Network Description

Figure C-2-1 details the device interconnections of the 3 Bus system shown in Figure
C-1

Figure C-2-1: 3 BusLoadflow Block Diagram

] vQ1 vQR ]
1 T12 ¢
vQ L DP1 DP2 L ve
(o1) ()
DP ] L ] DP
4 TN )
- DP1 va1 DP1 vat o
T13 T23
DP2 vQz bpz vez
i’ 3 ]
DP @ vQ
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C-2.1: Variable Labeling Convention

For this example, the following convention will be used for labeling variables and
functions:

Device Terminal Variables: X, pp car

aa Device Name
bb Variable Name

o n = normal terminal
i = information terminal

d I = import variable
e = export variable

f p = potential variable
f =flow variable

Deviceimport variable vector X,, ;
aa  Devicename
Device export variable defining function X, p, cor = faa b, cd(Xaa i)

aa Device Name
bb Variable Name

o n = normal terminal
i = information terminal

d e = export variable

f p = potential variable
f =flow variable

Device Jacobian J,
Device Jacobian Element J,, p, o

aa  Device Name

bb Export Variable Name

ag Import Variable Name

System Variables: Node Potentials V,
n Node Serial Number

System Variables: Flow Variablesl ,, y,

aa Device Name
bb Variable Name
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System Equation: KCL g,()
n Serial number of node KCL is applied to
System Equation: Potentials g, 4, m()

n Serial number of node
aa Device Name
bb  Export Potential Variable Name

System Jacobian Element: KCL vs Node Potential Jg , i

System Jacobian Element: KCL vsImport FIow Jgys , 20 b

System Jacobian Element: Potential Eqn vs Node Potential Jyy o 44 m
System Jacobian Element: Potential Eqn vs Import flow Jgs o dd aa b
Seria number of KCL node

Serial number of Node Potential

Flow Variable Device Name

bb  Flow Variable Device Variable Name

cC Potential Equation Potential Device Name
dd Potential Equation Potential Variable Name

B3°
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C-2.2: Network Specification

Now that the variable labeling convention has been addressed, it is time to define the
devices and the network interconnecting them.

PD Generator G1

Terminal Potential Variable Flow Variable Node
VQ XG1 V nep X1 Q_nif 1
DP XG 1 D_nep XGl_P_nif 4
Parameters
Vs 1.0PU
D¢ 0.0 RAD
Import Vector:
_ Xer onitld_ o1 o
Xe1i = 0= a 0
1_P_nif[] G1 P[]
PV Generator G2
Terminal Potential Variable Flow Variable Node
VQ X&2 v nep XG2_Q_nif 2
DP XG2_p_nip XG2_p_nef S
Parameters
Ps 0.5PU
Ve 1.05 PU
Import Vector:
ez om0 ez o0
Xe2 i = 0=0 0

2 D _nip[] Dvs ]
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PQLoad L3

Terminal Potential Variable Flow Variable Node
VQ XL3 v nip X3 Q nef 3
DP XL3 p_nip XL3 p_nef 6
Parameters
L 0.6 PU
Q. 0.3PU
Import Vector:
_ D(LS V. nlpD [VsD
X3~ O0=04, 0
3 D _nip[] 6]

Transmission LineT12

Terminal Potential Variable Flow Variable Node
VQl XT12 V1 nip XT12_Q1_nef 1
DP1 XT12 D1 nip XT12 P1 nef 4
vQ2 XT12 V2 nip XT12_Q2_nef 2
DP2 X712 D2 nip XT12 P2 nef S
Parameters

R 0.15 PU

X 0.60 PU

Import Vector:

(K12 V1 n|p|:| V.0

Ny O

12_D1 nlpD D 4D
VAN

U ‘0

T12_D2_nip[ ] 5]

T12_V2_nip

Xr12 i é((
U
ENs
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Transmission Line T13

Terminal Potential Variable
VQl XT13 V1 nip

DP1 X713 D1 nip

vQ2 XT13 V2 nip

DP2 X713 D2 nip
Parameters

R 0.05 PU

X 0.20 PU

Import Vector:

X713
Transmission Line T23
Terminal Potential Variable
VQ1l XT23_v1_nip
DP1 X723 D1 nip
vQ2 X123 V2 nip
DP2 XT23 D2 nip
Parameters
R 0.10 PU
X 0.40 PU
Import Vector:

X723

Flow Variable

X713 Q1 nef
XT13 P1 nef

XT13 Q2 nef
XT13 P2 nef

(X713 v1 n|p|:| V.0

%Tl?; D1 nlpD %/45

™ ks vz apl V0
DT13v2 PO D

B( 13_D2_nip[ ] 6]

Flow Variable

X723 Q1 nef
X723 P1 nef

X723 Q2 nef
X723 P2 nef

(K723 v1 n|p|:| V.0
%TZS D1 nlpD D SE

" Dty V0
& T23_V2_| pD D
|j(T23_D2_n| el 6]
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C-2.3: System Variables and Equations

There are nine system variable and equations associated with this example. There
are the six node potentials plus three import flow variables ordered in the following
manner:

Xys = M Vo V3 Vp Vo Vs lgio leip IGZ_Q]T

The nine system equations are composed of six Kirchhoff Current Law equations and
three potential equations:

gl(xsys) =161 0 X2 01 net X113 Q1 nef
gZ(Xsys) =gz 0 X2 02 nef X723 Q1. nef
g3(xsys) =Xi3 0 net T X113 02 net T X123 02 nef
94(Xss) = la1 p %12 p1_net + X113 P1_net
05(Xys) = Xa2_p_net + X112 P2 net T X123 p1_nes
ge(xsys) =Xi3 p net T X113 p2 net T X723 P2 nef
gl_Gl_V(Xsys) =V —Xe1 v nep
gZ_GZ_V(Xsys) =V, = Xe2 v nep

94 c1 0(Xys) = Vo= Xe1 b rep
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C-2.4: System Structural Jacobian Matrix
The equations for generating the system jacobian matrix are given by:
gl(XS/S)

Jss 11792 01 vi TIrz 01 va =N +N
Jys 1252 quve =N
Jss 137 I3 01 v2 =N

Jss 147 Ir12 01 p1 TIris o pt =N +N
Jys 15= 2 qu p2 =N
Jys 16 Iz qr 02 =N

'JS/S_l_Gl_Q =1

02(Xsy0)
Jss 21792 o1 =N
Jss 227 Ir2 g2 va T3 01 vi =N +N
Jss 237 I3 01 v2 =N
Jss 2472 o ;1 =N
Jss 25 = Ir12 02 p2 T Iras 1 p1 =N +N
Jys 26 = Jr2s qu p2 =N

JS/S_Z_GZ_Q =1

- 202 -



g3(XS/S)

Jys 315 drs v =N

Jys 32523 e va =N
Jys33=dsovtIns 2 vetdms vy =0+N+N

Jss 34~ I3 0o ;1 =N

Jgs 35 I3 e p1 =N

Jys 36 s 0.0 T Iz qep2 t Ir2s go 02 O+ N +N

g4(X5/s)

Jys a1z pvi TIrz pr i =N +N
Jys a2=dr2 pve =N
Jys a3=Jrz prve =N

Jss a4~ 2 p1 o1 FIrz pr ot =N +N
Jss a5 = Ir2 p1 p2 =N
Jss a6 = Iz prp2 =N

'JS/S_4_Gl_P =1
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g5(XS/S)
Jys 517 dr2 povi =N
Jys 522 p2 v T Iz pr v =N +N
Jys 5 3= Jrm prve =N
Jss 54~ Ir2 p2 p1 =N
Jys 55~ Jo2 p p 112 p2 p2 Iz prpt =0+ N +N

Jys 5.6 = Jrs prp2 =N

‘]ws_GZ_Q = 'JGZ_P_Q =0

gG(XS/S)

Jys 61 = Iz povi =N

Jys 62 drm povi =N

st_e_s = 'JLS_P_V + 'JT13_P2_V2 + 'JT23_P2_V2 =0+N+N

Jss 6.4~ I3 p2 p1 =N

Jys 6.5 = Jrs po p1 =N

Jys 66 =3 p ot Iris p2 p2 T I3 p2 2 =0+ N +N

-204 -



01 61 v(Xse)

Jys 1 v 1=
Jyscivero= Jeivo=0

Jssoiveirp=Jdevp=0

O 62 v(Xse)

Jys g2 v 2 =1
s c2vs=Jevp=0

Jys 2 v o= Jevo=0

94 1 p(Xgs)

Jys 1o a=1
Jsyse1p610=Jerpo=0

Jyseipcip=Jeipp=0
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By applying the rules of Structural Jacobian element arithmetic on the system
eguations, we can generate the following system Structural Jacobian:

pd
pzd
pzd
pzd
o

U
| O

l%c_.

1
.
o —ozZzzZ2zzZ2ZzZZ2
cooozZzzZz2zZ2Z2Z2
—ocooZzzzZz2ZzZZ
cooozZzzZzzZ2ZzZ22Z2Z2
cooozZzzZz2zZ2Z2Z2
O O O O OO oo —
O OO oo — oo

=t

Close ingpection of this matrix reveals seven blocks: Six 1x1 element blocks and one
3x3 element block:

Block 1
System Row: 7
System Column: 1
System Variable: V,
Equations:
01 1 v(Xge) = Vi~ Xa1 v e

Structural Jacobian:

Jo = [1]
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System Row:
System Columns:
System Variable:

Equations:

Structural Jacobian:

System Row:
System Column:
System Variable:

Equations:

Structural Jacobian:

Block 2

8
2
V,
O e v (Xsys) =V, = Xe2 v nep
Jgz = (1]
Block 3
9
4
V,

94 c1 0(Xys) = Vo= Xe1 b nep

Jes = [1]
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System Rows:
System Columns:
System Variables:

Equations:

Structural Jacobian:

System Row:
System Column:
System Variable:

Equations:

Structural Jacobian:

Block 4

3 5 6
3 5 6

g3(xsys) =Xi3 0 net T X113 02 net T X123 02 nef
95()(§.ys) =Xz p net T X112 p2 net T X723 p1_nef

ge(xsys) =Xi3 p net T X113 p2 net T X723 p2_nef

(N N Ng
Ju=tN N NH
MN N Ng
Block 5
1
7
IGl_Q

gl(xsys) =161 0 X2 01 net X113 Q1 ner

Jgs = [1]
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System Row:
System Column:
System Variable:

Equations:

Structural Jacobian:

System Row:
System Column:
System Variable:

Equations:

Structural Jacobian:

| GLP

| G2.Q

Block 6

gZ(Xsys) =gz 0t X12 02 nef X723 Q1. nef

Jgs = [1]

Block 7

g4(xsys) =61 p %112 p1net T X713 p1_nes

Jgr =111
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C-2.5: Solving the System

Applying the equations for the first three blocks yields:

vlzfsl_v_nep%ﬁ: 1.0 PU
V, = fGZ_V_nep%ﬁ: 105 PU
v4:f61_D_nep%ﬁ: 00 PU

Now the following system of three equations for the fourth block must be solved:

[gs(XB4’ Xpre) O
Xerror = @5()(84’ Xpre)ﬁz O
WG(XBAU Xpre) ]

Where:

Va0

-

V.0

Xpre = gjzﬁ
4[]

Starting with the intial guess of [1 0 0]" for xg, we obtain the following error vector
and jacobian matrix:

10.1824

o _[_ [l
Xarror = ] 0'4485D
1 0.5706

069412 06176 -1.79410
J, =H-06176 41176  -2.4706
017253 -24706 7.1765
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Inverting the Jacobian and multiplying by the error vector results in the following
correction vector for Xg, :

X =

10.0441
0 O
0 0.0769D
10.0424

1 _ 0 0
Xgg = Xga ~ Xp

By repeating the Newton-Raphson iterations severa more times, the following table
can be constructed:

Iteration Vs Vs Ve 95() 95() 96()
0 1.0000 0.0000 0.0000 0.1824 -0.4485 0.5706
1 0.9559 0.0769 -0.0424 0.0289 -0.0084 0.0311
2 0.9502 0.0762 -0.0463 2.284e-4 -0.448e-4 2.208e-4
3 0.9502 0.0761 -0.0464 1.370e-8 -0.214e-8 1.240e-8

From these results, the final three blocks can easily be solved:

le1 o= _fT12_Q1_nef(XT12_i) - fT13_Q1_nef(XT13_i)

IG]._Q = '01451 PU
lo1p = ~fr12 p1nel712.1) = Fras p1_ner(Xra3 1)
IG]._P = '01233 PU

leo o = _fT12_Q2_nef(XT12_i) - fT23_Q1_nef(XT23_i)

IGZ_Q = '02483 PU
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C-3: Summary of Results

Bus Voltage Magnitude
Bus Voltage Angle

G1 Red/Reactive Power
T12 Real/Reactive Power
T13 Real/Reactive Power

Bus Voltage Magnitude
Bus Voltage Angle

G2 Red/Reactive Power
T12 Real/Reactive Power
T23 Real/Reactive Power

Bus Voltage Magnitude
Bus Voltage Angle

L3 Red/Reactive Power
T13 Real/Reactive Power
T23 Real/Reactive Power

Bus1l

1.0 PU
0.0rad

-0.1233 PU
-0.1437 PU
0.2671 PU

Bus?2

1.0500 PU
0.0761 rad

-0.5PU
0.1471 PU
0.3529 PU

Bus3

0.9502 PU
-0.0464 rad

0.6000 PU
-0.2617 PU
-0.3383 PU
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-0.1451 PU
-0.0423 PU
0.1874 PU

-0.2483 PU
0.0558 PU
0.1925 PU

0.3000 PU
-0.1661 PU
-0.1339 PU



Appendix D: Modified L oad Flow Example

Appendix C demonstrated how a system can be built and solved for a conventional
load flow problem. This example demonstrates how control signals such as real and reactive
power sharing signals can be incorporated in the load flow solution. In particular, this
example connects two parallel generators to a load via a transmission line. A conventional
load flow fails for this example because the generator bus voltage magnitude is
overdetermined and there is no relationship for sharing reactive power. In this example,
information variables are used to force each generator to be proportionally loaded and have
the same power angle.

Figure D-1: Parallel Generator Load Flow Example

G2

%w (V)

D-1: Device Definitions

In addition to the transmission line and PQ load defined in Appendix C, two more
devices must be defined: A slack bus generator incorporating the load sharing information,
and a PQ generator employing the load sharing.
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D-1.1: VDS Generator (Slack Bus)

Interface Variables

Terminal Potential Variable Flow Variable (KCL Group) Type
VQ V (export) Q (import) (0) Normal

DP D (export) P (import) (0) Normal

p p (export) Information

o} g (export) Information

The import X;,,, and export X, vectors are defined by:

- -

M0
Parameters
Vg Scheduled Generator Voltage
Dg Scheduled Generator Angle
Pg Scheduled Generator Power Base
Equations
V =V,
D =D,
P
p= P,
_Q
97p

Device Structural Jacobian

The device structural jacobian is given by:

0

0

wb &
N



Device Jacobian

The device jacobian is given by:

0
0o

HARCGC
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D-1.2: PQS Generator

Interface Variables

Termina Potential Variable Flow Variable
VQ V (import) Q (export)

DP D (import) P (export)

p p (import)

q g (import)

The import X;,,, and export X, vectors are defined by:

VO
-
O° 0

Mo
Parameters
P Scheduled Generator Power Base
Equations
P=-Pgp
Q=-Pgpq

Device Structural Jacobian

The device structural jacobian is given by:

_ 0 N N
Jos = OL O

Device Jacobian

The device jacobian is given by:
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D-2: Network Description

Figure D-2-1 isablock diagram of the system represented in Figure D-1.:

Figure D-2-1: Parallel Generator Example Block Diagram

] vQ1 vQ2 o
J T12 vq

DP1 DP2

ve ve

DP DP

L ﬂi -

D-2.1: Network Specification

Using the same variable labeling convention as in Appendix C, the devices and
network are specified by:

VDS Generator G1

Terminal Potential Variable Flow Variable Node
VQ XG1 V nep X1 Q_nif 1

DP XG&1 D nep X1 P nit 3

p XGl _p_iep S

q XGl_q_iep 6
Parameters:

Vg 1.05 PU

De 0.00 rad

Py 1.00 PU

Import Vector:

_ Xoionitld_ o1 od
Xe1i = 0= a 0
1 P nif[] G1L P[]
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PQS Generator G2

Terminal Potential Variable
VQ X&2 v _nip
DP X&2 b nip
p XGZ  piip
q XGZ_q_iip
Parameters:
Pg 0.50 PU
Import Vector:
Xe2 i =

Transmission LineT12

Terminal Potential Variable
VQl XT12 V1 nip

DP1 XT12 D1 nip

vQ2 XT12 V2 nip

DP2 X712 D2 nip
Parameters:

R 0.05 PU

X 0.20 PU

Import Vector:

XT12 ol

Flow Variable

XG1 Q nef
XG1 P nef

Kez v mipd V10

U U
_ %GZ_D_nip = %@D

I EINEVAR
Eb(GZ_p_up D SD
DXGZ_q_iip | 6]

Flow Variable

X112 Q1 nef
XT12 P1 nef
X112 Q2 nef
XT12 P2 nef

(K12 V1 n|p|:| V.0

% EVAN
T12_D1 nlpD D 3D

" Sz vz ap D0
DT12v2 PO D

B( 12_D2_nip[_] 4[]
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PQLoad L3

Termina Potential Variable Flow Variable
VQ XL3 v nip X3 Q nef
DP XL3_D_ni p XL3_P_nEf
Parameters:
P, 0.60 PU
Q. 0.10 PU
Import Vector:
s vepd Vo0
X3~ O0=04, 0
3 D _nip[] 4[]
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D-2.2: System Variables and Equations

There are eight system variables and equations associated with this example. There
are the six node potentials plus two import flow variables ordered in the following manner:

%=1 Vo Vo Vo Vo Vo lgio ol
The eight system equations are composed of four Kirchhoff Current Law equations
and four potential equations:

91(Xss) = o1 0 * %62 g _ner ¥ X112_01_res
9o(Xss) = X3 0 net * X112_02_net

95(Xss) = o1 p + X6z p_net + X112 p1_nes
9a(Xss) = X3 p_net + X712 p2_net
011 v(*ss) = Vi~ Xe1 v e
9561 0(X%ys) = V3~ Xe1_p_nen
O5_c1_p(%3s) = V5 = Xa1_p_iep

Os c1 g (Xsys) = Ve~ X1 g iep
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D-2.3: System Structural Jacobian Matrix

Using the device structural jacobian matrices along with the system equations, the
following system structural jacobian can be created:

N N 0

od

0
1
S A
ocoocoocoZzZ22Z2Z2
oo —oZ2zZ2Z2
oOoocozZzZ2Z2
O —ooor o2
— OO0 o0ooooZ
Z OO0 OO oo —
|:|O

Applying the system reduction algorithms, five blocks can be identified: two 1x1
element blocks and three 2x2 element blocks:

Block 1

System Row: 5
System Column: 1
System Variable: V,
Equation:

Oic1v (Xsys) =V —Xe1 v nep
Structural Jacobian:

Jo = [1]
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System Row:
System Column:
System Variable:
Equation:

Structural Jacobian:

System Rows:
System Columns:
System Variables:
Equations:

Structural Jacobian:

Block 2

O: 1D (Xsys) =V;3=Xe1 b nep

Jso = [1]
Block 3
4
4
V,

gZ(Xsys) =Xi3 0 net T X112 02 net

94()(5ys) =Xi3 p net T X112 p2 nes

vl
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System Rows:
System Columns:
System Variables:
Equations:

Structural Jacobian:

System Rows:
System Columns:
System Variables:
Equations:

Structural Jacobian:

Block 4

3 7
5 8
" GLP

g3(xsys) =61 p T Xe2 p net T X712 p1_net

Os 1 p (Xsys) =V5— X1 pien

e

Block 5
1 8
6 7
Ve I GLQ

gl(xsys) =61 0 X620 nef T X112 01 nef

Os c1 g (Xsys) = Ve~ X1 g iep

w1
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D-2.4: Solving the System

Applying the equations for the first two blocks yields:

vlszl_V_nep%ﬁ: 1.05 PU
vngm_D_nep%ﬁ: 0.0 rad

The remaining blocks are systems of 2x2 equations and unknowns. Blocks 3 and 5
are nonlinear and must be solved iteratively. Block 4 is linear block requiring only one
iteration:

Block 3:
n v, . | a0 0.0
0 1.0000 0.0000 10,1353 0.5414
1 1.0000 10,1095 0.0293 0.0085
2 0.9933 10,1105 2017e-4 0.841e-4
3 0.9933 10,1105 1.0466-8 0.569-8
Block 4:
n v, e | 90 Gor)
0 1.0000 1.0000| 11188 20000
1 0.4125 0.4125| 0.0000 0.0000
Block 5
n v, e | @0 Ges )
0 0.0000 o.oooo|| 0.1750 0.0000
1 0.2828 0.1167| 0.000e-8 -0.000e-8
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D-3: Summary of Results

Bus1l
Bus Voltage Magnitude 1.05PU
Bus Voltage Angle 0.00 rad
G1 Real/Reactive Power -0.4125 PU -0.1167 PU
G2 Real/Reactive Power -0.2063 PU -0.0583 PU
T12 Real/Reactive Power 0.6188 PU 0.1750 PU
Bus?2
Bus Voltage Magnitude 0.9933 PU
Bus Voltage Angle -0.1105 rad
L3 Real/Reactive Power 0.6000 PU 0.1000 PU
T12 Real/Reactive Power -0.6000 PU -0.1000 PU

I nformation Node 5 (p)
Magnitude 0.4125
I nfor mation Node 6 (q)

Magnitude 0.2828
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Appendix E: Waveform Examples
E-1 Examples of Waveform Types

While the possibilities of waveform definitions is endless, this thesis will concentrate
on the following waveform types:

Waveform Type Code

Undefined 0
Data Series 1
Fourier Series 2
Legendre Series 3
Polynomials 4
Matlab Polynomials 5

Chebyshev Series 6

The code in the above table refers to the value of the t ype element in the WAVEFORM
structure.

E-1.1 Data Series

A data series consists of n equally spaced samples of the waveform stored in an array
of double precision floating point numbers. The first coefficient is associated with the
value of the waveform at the beginning of the time interval and the last coefficient is
associated with the value of the waveform at the end of the timeinterval. Each element of
the array is given by:

¢ =f(t)

I
L=t (1)

i=12...,n

A data series representation is primarily used for plotting the time history of
variables and for calculating waveform operators which would prove difficult with other
waveform types.
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E-1.2 Polynomial Expansion

A polynomial expansion consists of n coefficients of a polynomial representation of
the waveform normalized over the interval [-1 1].

f(x) = _iqxi -1

t—1,
t,—1

X=-1+2

Polynomial expansions are useful for evauating switching operators described
above.

A Matlab Polynomial expansion is expressed in descending order:
f)= ¥ ax""
i=1

E-1.3 Orthogonal Function Series

Orthogonal Function Series can be an excellent means for representing waveforms.
In an orthogonal series representation, the value of the coefficient of a given order of the
characteristic function is independent of the number of termsin the orthogonal series. This
means truncating an orthogonal series by eliminating higher order coefficients will still
result in the best possible fit with the remaining coefficients.

In general, an orthogonal series representation is of the form:
f)= 5 6F 1)

X % X]

where F;(x) is the ith order characteristic function of the orthogonal function series
with respect to the weighting function r(x). These characteristic functions observe the
following property:
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X

ld@ﬁ@ﬁﬁmm=0fm m#n

X

l r (X)F () F o (X)x = G(m)

With this property, the coefficients ¢, of the series can be found:

LMMKME{QMX

“TGi-1

E-1.3.1 Fourier Series

Perhaps the most widely used orthogonal function series is the Fourier Series.
Unfortunately, the Fourier Series is unsuitable for dynamic simulations. To see why, one
need only look at the manner in which afunction is expressed in a Fourier Series:

K@=%fiAw$m¢fi&$ﬁm)

t—1,
t,—1

X=-1+2

Notice that at x=1 and x=-1 sin(iTx)=0 and cos(itx) =(-1)' . Consequently
f(1) =f(-1). In other words, the starting value and ending value of any waveform
represented by a fourier seriesis forced to beidentical. In dynamic simulations however,
we often have equations of the form:

dy _
o =f(z,t)
This equation isnormally evaluated by integration:

t

y=Yy,+ J f(z,T)dt

0
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where y, is the value of the waveform y at the beginning of the interval. If y is
represented by a Fourier Series, then y evaluated at the end of the interval will also bey,,.
In other words, while the value of a state variable may change within the interior of a
time interval, at the boundaries, the value is constrained to be a constant independent of
the length of the time interval. This constraint is artificial and not a property of real
physical systems.

E-1.3.2 Legendre Series

Legendre Series use legendre polynomials to form the basis of an orthogonal
function series over the interval [-1 1]. Legendre polynomials L;(x) of order i are defined
by the following equations:

u; (x)

Li(X):m for 1 even
_Vi(x) for | odd
Li(X)—m or i o
ui()():1_i(i27:1))(2+i(i—2)(i47:1)(i+3)X4_i(i—2)(i—4)(i6w:1)(i+3)(i+5)x6+“.
Vi(x)zx_(i—133I(i+2)X3+(i—1)(i—3zsl(i+2)(i+4)x5_
(i—1)(i—3)(i—5)(i+2)(i+4)(i+6)x7+
2

Thefirst six Legendre polynomials are readily found to be:

Lo(x) =1

L,(x) =x

L) = 5(3¢-1)

Ly(x) = %(5X3 -3%)
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L,(x) = %(35x4 -30x°+3)

L(x) = %(63x5 —70x% + 15x)

L egendre Series also obey the following recursion formula
(n + 1)Ln +1(X) = (2n + 1)XLn(X) - nI-n —1(X)
An nth order legendre series representation of awaveform is given by:
f0)= 3 eli-s(x)

where:

%=1

X, =1
rx)=1
Fi(x) =Li(x)

2

0 =31

The time interval [tyt;] can be mapped to the interval [-1 1] with the following
transformation:

t—1,
t,—1

X=-1+2

The coefficients ¢, can be found by integration:

_a-1 j FOOL, _,(X)dx

=1

G=75

E-1.3.3 Chebyshev Series

Chebyshev Series use Chebyshev polynomials to form the basis of an orthogonal
function series over the interval [-11]. Chebyshev polynomias T,(x) of order i are
defined by the following equations:
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To(x) =1
T,(X) =x
T, (X)=2XT,(x)-T,_,(x) for i=1
The following three Chebyshev polynomials are given by:
T,(x)=2x*-1
T,(x) =4x° - 3x
T,(x)=8x*-8x*+1

An nth order Chebyshev Series representation of awaveform isgiven by:
f)= 5 6Tiu(x)

where

%=-1
X, =1

the weighting function r(x) is given by:

1
r(X)_Vl_—xz

and:
Fi(x) =Ti(x)

GO =1

G(m):g for m>0
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E-2 Waveform Conversions

This section describes how to convert a waveform consisting of a vector of
coefficients of order n, to a waveform of possibly a different type composed of a vector of
coefficients of another order n,. In all cases, the conversion is a linear matrix operator.
Hence for given values of n, and n,, the conversion matrix need only be calculated once.

From here on, L;(x) refers to a vector containing the polynomial coefficients of the ith
order Legendre Polynomial. L;(x;) refers to the ith order Legendre Polynomia evaluated at
X;. Likewise, T(x) refersto avector containing the polynomial coefficients of the ith order
Chebyshev Polynomial. T(x)) refers to the ith order Chebyshev Polynomial evaluated at x;.

E-2.1 Legendre Series
E-2.1.1 Legendre Seriesto Data Series

Converting a Legendre Series of order n, to a data series of order n, requires the
construction of the following matrix:

M L) L) - Lnl—l(xo) U
1L LK) . Lt g

. :é*l LY L) o L) @
> O
Lk U

O, : . _ 0
L) L) o Lyoi,-0p

_ i
o 1+2n2—1

If C, is the vector of the Legendre Series coefficients and C, is the vector of data
series points, the following relation holds:

Ci=AnG
E-2.1.2 Legendre Seriesto Legendre Series

Converting a Legendre Series of order n, to order n, requires only the truncation of
termsif n; > n, or the insertion of zerosin the higher order termsif n, < n..
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E-2.1.3 Legendre Seriesto Chebyshev Series

Converting a Legendre Series of order n, to a Chebyshev Series of order n, first
requires the truncation or padding with zeros of the Legendre series to order n,. The
resulting Legendre Series should then be multiplied by the following upper trianglular
matrix:

ALT:AT_lAL
A =[L(¥) LX) Lyx) ... L, _.(X)]

A =[To) T(x) T,() ... Ty (X))

where L;(x) is a vector of order n, holding the polynomial coefficients of the ith order
Legendre Polynomial and T;(x) is a vector of order n, holding the polynomial coefficients
of theith order Chebyshev Polynomial.

E-2.1.4 Legendre Seriesto Polynomial Expansion

Converting a Legendre Series of order n, to a polynomial expansion of order n, first
requires the truncation or padding with zeros of the Legendre series to order n,. The
resulting Legendre Series vector should then be multiplied by the following upper
triangular matrix:

A =[L) L) LK) ... LX)

where L;(x) is a vector of order n, holding the polynomial coefficients of the ith order
Legendre Polynomial.
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E-2.2 Chebyshev Series
E-2.2.1 Chebyshev Seriesto Data Series

Converting a Chebyshev Series of order n, to a data series of order n, requires the
construction of the following matrix:

M (%) T - Tnl—l(xo) U
1T TR e Tk g

. :éﬂ T T T @
° O O
Lk U

O, : . _ 0

T Ti-) Tle) o Tooi,-0p

_ i
%= 1+2n2—1

If C, isthe vector of the Chebyshev Series coefficients and C, is the vector of data
series points, the following relation holds:

Ci =AnpC
E-2.2.2 Chebyshev Seriesto Legendre Series

Converting a Chebyshev Series of order n, to a Legendre Series of order n, first
requires the truncation or padding with zeros of the Chebyshev series to order n,. The
resulting Chebyshev Series should then be multiplied by the following upper trianglular
matrix:

Aqr=A 1AT
A =[L(¥) Lix) Lyx) ... L, _i(x)]
A =[ToX¥) Tx) T(x) ... T, _.(X)]

where L;(x) is a vector of order n, holding the polynomial coefficients of the ith order
Legendre Polynomial and T;(x) is a vector of order n, holding the polynomial coefficients
of theith order Chebyshev Polynomial.
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E-2.2.3 Chebyshev Seriesto Chebyshev Series

Converting a Chebyshev Series of order n, to order n, requires only the truncation
of termsif n, > n, or the insertion of zeros in the higher order termsif n, < n,.

E-2.2.4 Chebyshev Seriesto Polynomial Expansion

Converting a Chebyshev Series of order n, to a polynomial expansion of order n,
first requires the truncation or padding with zeros of the Chebyshev series to order n.,.
The resulting Chebyshev Series vector should then be multiplied by the following upper
triangular matrix:

A =[To¥) T(x) T,() ... Ty _4(X)]

where T,(x) is a vector of order n, holding the polynomial coefficients of the ith order
Chebyshev Polynomial.
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E-2.3 Polynomial Expansion
E-2.3.1 Polynomial Expansion to Data Series

Converting a polynomial expansion of order n, to a data series of order n, requires
the construction of the following matrix:

Lh U
U % % X(;_lD
a x X x," O
0 ) 00
XZ XZ XZ

APDZE1 ﬁ
U U
LT U
O 0
n-1[]

ETL O T

X=-1+2 |
n2_1

If C, is the vector of the polynomial coefficients and Cj is the vector of data series
points, the following relation holds:

Cd :APDCp
E-2.3.2 Polynomial Expansion to Legendre Series

Converting a polynomial expansion of order n, to a Legendre Series of order n,
requires first converting to a Legendre series of order n, then converting the Legendre
Series to order n,. Recall that the matrix for converting from a Legendre Series to a
Polynomial is upper triangular. Hence one only needs to use backward substitution to
solve for the Legendre Series coefficients:

A =[L¥) Li(x) L) ... Ly iX)]
Cp:ALCI

E-2.3.3 Polynomial Expansion to Chebyshev Series

Converting a polynomial expansion of order n, to a Chebyshev Series of order n,
requires first converting to a Chebyshev series of order n, then converting the Chebyshev
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Series to order n,. Recall that the matrix for converting from a Chebyshev Series to a
Polynomial is upper triangular. Hence one only needs to use backward substitution to
solve for the Chebyshev Series coefficients:

A =[To¥) T(x) T,() ... Ty _4(X)]

C,=AC,

p
E-2.3.4 Polynomial Expansion to Polynomial Expansion

Converting a polynomial expansion to another polynomial expansion of higher
order only requires setting the higher order terms to zero. Converting to alower number
of terms requires more effort. The best method is to convert to an orthogona function
series, truncate, and convert back. Since all of these operations are linear matrix
operations, the conversion matrix need only be calculated once. For this conversion,
either the Legendre Series or the Chebyshev series would be appropriate since the type
conversions to and from the series solution does not add any truncation error (The
truncation error is solely due to the truncation of the Legendre Series or Chebyshev series
and not due to the conversions).
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E-2.4 Data Series
E-2.4.1 Data Seriesto Data Series

There are many methods for converting a data series to another data series with a
different number of coefficients. Two common interpolation schemes for performing this
conversion are linear interpolation and cubic splines. These methods can be found in
many numerical methods textbooks and will not be described here.

E-2.4.2 Data Seriesto Legendre Series

If n,=n,, a Data Series can be converted to a Legendre Series by taking the
pseudo-inverse of the matrix converting a Legendre Series to a Data Series. If n,<n,, the
Data Series can be converted in asimilar manner to a Legendre Series of order n, padded
with zeros to order n,.

M L) L) - an—l(xo) U
1Lk LK) o L) g

. :é*l L L) o L) @
> O
Lk U

O, : . _ 0

T L) L) o Lyoi(,-0p

_ i
%= 1+2n1—1

If C4 is the vector of data series points and C, is the vector of Legendre Series
Coefficients, the following relation holds:

Ca =ApG

C = (AbAL) ALCy
E-2.4.3 Data Seriesto Chebyshev Series

Converting a Data Series to a Chebyshev Series can be done in the same manner as
the conversion to a Legendre Series:
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M %) T - Tnz—l(xo) U
1T TR o Tk g

. :éﬂ T TR T @
° O O
Lk U

O, : . _ 0

T T Tle) o Tooi,-0p

_ i
a 1+2n1—1

If C, is the vector of data series points and C, is the vector of Chebyshev Series
Coefficients, the following relation holds:

Cd :ATDCC

C. = (ApAw) ARG,
E-2.4.4 Data Seriesto Polynomial Expansion

Converting a data series to a polynomia expansion of equal or less order using a
least squaresfit is a straight forward process. If the number of pointsin the data series n,
is equal to or less than the number of points in the polynomia n,, the resulting
polynomial will pass through each point of the data series. If larger, the polynomial will
not necessarily pass through all of the data series points, but will be a least square
approximation.

For n, < ny:

For this case, the problem is to solve for the coefficients of the polynomial ¢, for
i <n,. For the higher coefficients (i > n,), ¢; =0. In the following discussion, let C, be
the vector of n, data series coefficients and C, be the vector containing the first n;
polynomial coefficients. Definethe n, x n, matrix A asfollows:
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nl 2 m-in
T Xo Xo s
a x X x," O
O ) o -1
ﬁl % X X ﬁ
Aep =1,

O O
O O
O O

n-1[]
ETL Xn, -1 erl—l 11—1D

X=-1+2 |
nl_l

Matrix App is square, clearly has rank n,, and therefore is invertible. Consequently
solving for C, is straight forward:

APDCp = Cd
C, =AsC,
Forn, > n,:

If the number of data pointsis greater than the number of polynomials, the number
of columns in the A, matrix described above would have n, columns and n, rows. Agp
would clearly not be invertible. The pseudo-inverse of Ay, can be calculated and
provides the least squaresfit of the data series:

C, = (Al;rDAPD)_lAl;rD Ca
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E-3 Waveform Arithmetic

This section describes how to perform addition, subtraction, multiplication, and
division on the various types of waveforms.

E-3.1 Data Series

Performing waveform arithmetic on data series is very easy. The waveforms are
converted to the proper size and then added, subtracted, multiplied or divided element by
element.

E-3.2 Polynomials
E-3.2.1 Addition/Subtraction

Adding or subtracting two polynomia waveforms simply entails converting the two
waveforms to the proper length and adding or subtracting element by element.

E-3.2.2 Multiplication

Multiplying polynomial waveform W of size n, and Y of size n, together to get
polynomial Z of size n,+n,-1 can be accomplished by constructing the following
matrix of sizen,, +n,- 1 xn,;

Y, 0 0 O 0 0
S‘(z Y, 0 O 0 0 B
¥;: Y, i O 0 0O
By, v, Y, Y, o oU
v, =H. :
0. O
O O
- . 0
DO Yny Yny—1|]
O O
DO 0 n O
Z=M,W

Z can now be truncated or padded with zeros to convert it to the proper length. The
truncation of a polynomial is discussed in section E-2.3.4.
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E-3.2.3 Division

Dividing two polynomial expansions can be difficult, particularly if the
denominator polynomial has one or more zero crossings. In genera, there is no simple
method for performing the division, athough the recursion process described in this
section will work. Define the problem to be:

ny _

Ny .leJ'XJ_l
i-1_ 1=

ST

z Ckxk—l
k=1

There are two parts to the problem. The first task is to use synthetic division until
the numerator of the remainder is of size n. -1 or less. The second task is to convert the
remaining fraction into another polynomial expansion by a process similar to synthetic
division, but proceeding from the constant term and working up in order.

Synthetic division is the process of dividing one polynomial by another until the
remainder is of order 1 less than the denominator.

Yig-n+n = <

Initialy, d; is set equal to b,. After the first iteration, d, is set equal to the remainder
r.. The processisrepeated until ny=n,- 1. At this point, the direction of the division is
reversed and we get:

Ny nd—l
-1 -1
> dx d > X
=1 Y =1
o T L PXe e
: k-1 1 : k-1
2 CX 2 CX
k=1 k=1
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In this manner, we can express the remaining fraction as another polynomial
expansion. The actua values for Y, are equal to the sum of the components from the
forward and backwards synthetic division.

Note that if the denominator has a zero over the interval [-1,1], the backwards
synthetic division will result in adiverging series.
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E-3.3Legendre Series
E-3.3.1 Addition/Subtraction

Adding or subtracting two Legendre Series waveforms simply entails converting the
two waveforms to the proper length and adding or subtracting element by element.

E-3.3.2 Multiplication

Multiplying two Legendre Series together can be accomplished in two ways. The
first way is to convert the Legendre Series to polynomial expansions, multiply the two
together, then convert the product to the Legendre Series of the proper size. The second
method uses the recursion formula for the Legendre series to assist in the process:

To multiply Legendre Series Y of size n, by the Legendre Series W of size n,, to
obtain the Legendre Series Z of size n,=n,+n,-1, Y must first be converted to a
polynomial expansion Y, of size n,.

A =[LX) L) LK) ... Ly ()]
Y, =AY

The recursion formulafor the Legendre Seriesis given by:

X0 = 00+ B

which can be translated into the following matrix for multiplying a given Legendre
Series of size n, by x:
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1 0

Eb 300 0 o 7

0 5 0

1 0o = 0 0 0 O

O 5 O

0 0

0 g 0 % 0 0 0

0 3 0

0

%) 0 o0 0 0 £

AXL:% %

[ 0

0 _ 0

0 0
n—-2

d 0

Eb 000 2(n,—-2)+1 0 O

0 n-1 O

z 0

EO 0 0 0 .. 0 2 -1+ 1

|:| n_l |:|

.z - 0

ED 0 00 2(n,—-2)+1 0 0

If we define the vector Y, to be Y, padded with zeros such that it is of size n,, we
can define the following n, x n,, matrix:

_ n,-1, O
Ampl - %pl AXLYpl AXLAXLYpl e A Yp1E|

Thefinal n, x n,, multiplication matrix A, can now be found:
A = AnA
Z =AW

Of course Z may have to be truncated or padded with zeros to convert it to the
desired length.
E-3.3.3 Division

There is no straight forward method for dividing two legendre series. The easiest
way appears to be converting to polynomia expansions, performing the divison, then
converting back to the legendre series.
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E-3.4 Chebyshev Series
E-3.4.1 Addition/Subtraction

Adding or subtracting two Chebyshev Series waveforms simply entails converting
the two waveforms to the proper length and adding or subtracting element by element.

E-3.4.2 Multiplication

Multiplying two Chebyshev Series together can be accomplished in two ways. The
first way is to convert the Chebyshev Series to polynomia expansions, multiply the two
together, then convert the product to the Chebyshev Series of the proper size. The second
and preferred method uses an alternate definition of a Chebyshev Polynomial to assist in
the process.

T (x) = cos(n cos '(x))
T_,(x) =T,(X)

From this definition, the product of two Chebyshev Polynomials can easily be
derived:

T (X)T,,(x) = cos(n cos '(x)) cos(m cos '(x))
T ()T, (X) = % (cos((n +m) cos '(x)) + cos((n — m) cos (x)))

T 00T 0 = 5 (T, 00+ Ty 00)

To multiply Chebyshev Series Y of size n, by the Chebyshev Series W of size n,, to
obtain the Chebyshev Series Z of size n,=n, +n,, - 1, three n, x n,, matrices should first
be constructed:
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O

=

o
N Y3 . . . =g
Soooooocdo
I
>

I O |

| ny
cee s CoOoOoOoooOo
OooOoOoooo ;@
o O O o V|nyO : : : ® (N
ST T
. . . N - - OYZ Ylo
. > >0 5
ooy - - -0 o o> o o
> > T bl (v o o [
- (N (™ N 1
. .O O
B oD oo0 oo oy < 2

<

Thefinal n, x n, multiplication matrix A is given by:

1

A

(Ava + Az + Ava)

Z=A W
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Of course Z may have to be truncated or padded with zeros to convert it to the
desired length.

E-3.4.3 Division

Thereis no straight forward method for dividing two chebyshev series. The easiest
way appears to be converting to polynomia expansions, performing the divison, then
converting back to the chebyshev series.
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E-4 Waveform Functions
E-4.1 Data Series
E-4.1.1 Trigonometric and Exponential Functions

All trigonometric and exponential functions can be performed point by point on the
data series coefficients.

E-4.1.2 Integration and Differentiation

There are a number of techniques for integrating or differentiating Data Series. All
are by their nature approximations and can suffer from numerical instability problems
associated with conventional simulations. One simple method of integration employs the
trapezoidal rule:

Mm o0 0 O O .. 0 0 O0fg
Oh h O
[E > 0 O ... 0 0 0O
Dh h O
O O
o h > 0O O 0 O OD
O O
h h
= — O
2 h h > 0 0 O OD
O O
[12 h h h 2 0 0 0O
-0 O
SJD D D
O O
o O
- . .0
O O
Dg h h h h 2 0 O
Dh h O
an n O
02 h h h h h > OD
O O
h h
= -0
=2 h h h h h h 20
2
h_n—l

With this matrix, the integral equation:
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Y=n+J'mmt

T=-1
Becomes the matrix operation:
Y=5,W+Y,
The vector Y may be now converted to a different length if so desired.

Differentiating a Data series can be done in a number of ways. The secant method
can be easily implemented with the following matrix:

-1 1 O O o0 .. 0 0 0Op
0 1 1 U
o3 0 5, 00 .. 0 0 op
] 1 1 ]
o, 1 1 0
DO > 0 > 0 0 0 OD
] 1 1 ]
1HO 0 -— 0 = 0 0O O
ADDlzﬁg 2 2 @
u. .0
] ]
] i
] - -[]
] ]
0o 0 O O O .. —% 0 %D
] ]
0o 0 O 0 o0 .. 0 -1 1
1
n=h-1

Another approach is to choose a differentiation matrix such that it is consistent with
the integration matrix. Consistency is defined by the following matrix equation:

SpAop2 =M

where

- 250 -



O O Fr O
O r OO
R O O O
mnlnislssslninls

The M matrix reflects the fact that differentiating a data series will destroy the
subsequent constant of integration. Sin&g, is generally singular, only its
pseudo-inverse can be taken:

Dop2 = (S;DSDD)_ngD M

This matrix actually has a very simple construction:

Dd 2n-3 2n-5 2n-7 2n-9 0
Ot n n n n 0
0y 2n-5 2n-7 2n-9 D
0-= d, - 0
] n n n n [
01 3 2n -7 2n -9 H
DH _H d33 n - n SN
1

DDDzzﬁg_l 3 _3 d 2n-9 @
O n n n a4 n "0
] ]

1 3 5

0= -= = -— dss .0
on n n 0
] ]
] ]
- ]
- ]

d,, is equal to the the negative sum of all the other terms inxtherow. As a
consequence, all of the row sumslf,, are equal to zero an®,p, is singular.

E-4.1.3 Switching Functions

All switching functions can be performed point by point on the data series
coefficients.
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E-4.1.4 Waveform Smoothing

There are times when it may be desirable to remove high spectral content features
of a waveform. One way to do this is to replace the value at each point in the time
domain by the average of the waveform over some intefvalA,x + A]. This can be
accomplished by defining the following:

n, = intﬁ%ﬁ

whereint(x) is the integer nearest

1 1 1

1
b= - =z . = 0 o ..H
BI’IA nA nA nA B
0 1 1 1 1 1 0 G
ny+1 ny+1 ny+1 ny+1 ny+1 0
0q 1 1 1 1 1 0
O .0
O O
: :
Asmth:E 0
O . 0
ol T .0
0 2n, 2n, 2n, 2n, 2n, 2n, 0
O 1 1 1 1 1 O
O o0 — —_— ..gd
|:| 2nA 2nA 2nA 2nA 2nA |:|
O O
O O
O O
O O

Multiplying a data series b, will return a smoothed version of the data series.

- 252 -



E-4.2 Polynomial Expansion
E-4.2.1 Trigonometric and Exponential Functions

There is often no direct way of evaluating a trigonometric or expontential function
of a polynomial expansion. Instead, the function is performed on a data series converted
from the argument polynomial. The resulting polynomial is then reconverted back into a
polynomial.

E-4.2.2 Integration and Differentiation

Integrating a polynomialy’ of size n, results in another polynomia of size
n,=n,+ 1. Then,xn integration matrixS,; is given by:

0. 1 11 -)" " (-0
013 34 7 mer om0
l y y
01 0 0 O 0 0 O
U 1 U
oo - 0 O 0 0 O
o 2 0
l 1 l
5 1 5
l l
0l- l
0. l
O _ O
l 1 l
Do o 0 o o U
0 n, -1 0
O 1 O
0o o o0 0O 0 — 0O
U Ny O
The integral is evaluated by:
Z=5,Y+Z,

Of courseZ may be converted to a polynomial of a different size if desired.

Differentiating a polynomialy’ of size n, results in another polynomia of size
n,=n, - 1. Then,x n, differentiation matrixAy is given by:
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® 10 0 . 0 0 [
0 2 0 . 0 og
Eboo3. 0 0 -
O O
A =0 O
o 0
0 . . : B
0 0 O n-2 00
0

%)ooo 0 n-17

The Differential is evaluated by:
Z=AY
E-4.2.3 Switching Functions

Switching functions are those which produce a Polynomial waveférwihich is
composed ofm pieces of other Polynomial waveforms. Lgtbe the Polynmomial
representation of thgh piece ofY. Let x,(j) be thex coordinate of the ending point of
thejth piece where,(0) = -1 andx,(m) = 1.

DefineY, to be the Legendre Series representatio¥ of

.0
o
Y0
O

_0°g
Y=g g

[ -

2000

In

Then using the orthogonality property of the Legendre Series:

%)

m

Y=y J Hﬁ?_lﬁ'j(x)h(x)dx
%('-1)

Now define the following row vector:

1063)) = [Lo6(1)) Lalo(1)) LaGo()) - Loal6(1))  Laxo(i))]
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With S, as defined in section E-4.3.2 ad,,() as defined in section E-3.3.2 the
solution forY, can easily be found:

M O
O 0 0 .. 0 g
0 4 0
b = 0 o O
o 2 0
Ep 0 > 0 -
= 0

G =0 2 B
N N
H) 0
- 0
0. 0
0 .0
o 0 0 2n 1D
0 2 0

Y = jiﬁ (%)) ~ 1060 = DNSLAW(FG,
Now we need only convelY, to a polynomial exansioN:
Y=AY
where
A =[Lo(x) Li(x) LX) ... Lny_l(x)]
E-4.2.4 Waveform Smoothing

There are times when it may be desirable to remove high spectral content features
of a waveform. One way to do this is to replace the value at each point in the time
domain by the average of the waveform over some intefvalAx + A]. This can be
expressed by the following integral:

X+A
noog 1o
ileiX 1:ij jgl\NjTJ 1dT

X=A

The only problem with the above equation is near the boundarfesl andx =1
where the integration interval has the possibility of crossing the boundaries and including
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within the average a section of the polynomial outside the defining intgi/d]. Hence
the smoothed polynomial should be composed of the following three segments (assuming
A<1):

~1<x<-1+A
n 1 x+A n
YX e Wt 'dt
i; a X+A+1J j; ]
-1+A<x<1-A
n 1 x+A n
Y, x' t=— Wt "t
i; bi ZAXLJ'; ]
1-A<x<1
n 1 1 n
Yx te——— Wt 'dt
i; ¢ 1—X+AI j; ]

Note, if 1 <A <2 then the interval boundaries are given by:

-1 , 1-4]
[1-A , -1+4]
[-1+4A , 1]

If A>2then there is only one interval and the average of the waveform is returned:
n i_1
> Wix'dx

Y, =0 for i>1

For A <2 evaluating the integrals require the definition of shifting a waveform left
or right byA. This can be done by constructing the following binonomial matrix:
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O O O P k-
OO Fr NP
O Fr W weHEk
P~ O b~ P

exp

(99)
NO0PERRO

OOOOMO OO0 00

This matrix can be generated by the following recursion formula:
Beg(1,J) =1
B (2n,1) =0

Bexpi’j):B

exp

i,j-1)+B,(i-1j-2)

exp

Multiplying B,,, element by element by the following matiB;  will give us the

transformation matriB,, for shifting a waveform left byA .

=
>
=,
=,
>

w
1]

CODOEES 8R!

OooOO0doO0on

The tools are now all presentV can be integrated using the integration magix
defined in section E-4.2.2. The limits of integration for the three segments can be applied
by either usingBg,, for the limits involvingx, or by direct evaluation for those limits not
involving x. Dividing by the averaging interval comes next. For the first and third
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intervals, the methods outlined in section E-3.2.3 can be used to divide a polynomial by
another polynomial. Finally, the procedure for generating Switching Functions described
in section E-4.2.3 can be used to generate the coefficients for the sotution
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E-4.3 Legendre Series
E-4.3.1 Trigonometric and Exponential Functions

There is often no direct way of evaluating a trigonometric or expontential function
of a Legendre Series. Instead, the function is performed on a data series converted from
the argument Legendre Series. The resulting polynomial is then reconverted back into a
Legendre Series.

E-4.3.2 Integration and Differentiation

Differentiating a Legendre Series can be done easily by differentiating the recursion
formula for the Legendre Series. Recall:

(i + D)L, y(X) = (21 + DXL (x) =1L _4(X)

Differentiating:

dLi,,(x) [ +107 dL(x) 0 0 Li_1(x)
dx ‘@Ziﬂ Fax % Hi+1@ dx

where:

dLo(x) _
dx 0

dL,(x)
dx

=1=1x)

The goal is to generate the followimgx n matrix:

_ EdLO(X) dLy(x) dLy(x) dLn—l(X)E
0 dx dx dx dx [

AoL

The columns ofA,, can be solved recursively once we define the makjx for
multiplying a Legendre Series Vector Ry

X0 = 00+ B
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1 0

Eb 300 0 0o 7
O ) O
O o £ o 0 o O
O 5 O
O O
0 % 0 ;’ 0 0
O ; O
O

%) 0 ;0 0 0 g
0 0
AXLIE. E
O O
o : O
] n-2 |
0 0 0 0 = 0 g
0 2n-2)+1 , 0
n-1

D00 o0 .. 0 50Dl
O I O
_n-1 O

EO 0.0 0 .. ST o O

Note that the last row of,, has been elminated to make the matrix square. This
will not cause any problems since in the recursion formula, the last coefficient of the
vector multiplyingA,, is always zero.

Let A, (:,)) represent th@gh column ofAp, . Letl be then x n identity matrix. The
recursion formula states:

Ao (1 +2) = @%@(AXLADL(:J + 1) +1(,i +1))—ﬁiiT1HADL(:,i)

1<i<sn-2

OnceA,, is constructed, it can be used to calculate derivatives. Wetnd Y be
vectors of Legendre Series coefficients of size Then the following statements are
identical:

_dw
Y_dx
Y =AW

Of course, thenth coefficient ofY will always be zero since theth row (as well as
the first column) ofA, will always be populated with zeros.
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Integration is a bit more complex. In general, the problem is to solve the following
equation:

Y=Y, + J wdt

T=-1

First, then+1 x n indefinite integral matrix§, should be found. The easiest way of
generatingS,, begins by adding an additional column Ag, using the same recursion
formula to form then x n+1 matrixAp, ;. S, is simply the pseudo-inverse 8§, ;:

S.= (AI-DrLlADLl)_lAI-DrLl

The next step is to evaluate the integrakat-1. This can be done by multplying
the following row vector by5,, :

X.=[1 -1 1 -1 ... ()"Y
SPESSH

The first row of S, contains all zeros. If this row is replaced bg, and the
resulting matrix calledS, , we have all the pieces for calculating the integral of a
Legendre Series:

Y= ,WH+Y,

Of course, the vector may have to be truncated or padded with zeros as required.
E-4.3.3 Switching Functions

Switching functions are those which produce a Legendre Series wav&farhich
is composed ofn pieces of other Legendre Series waveforms. f.dte the legendre
series representation of th#h piece ofY. Let X,(j) be thex coordinate of the ending
point of thejth piece where(0) = -1 andx,(m) = 1.

Let:
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<
I
Dooogogpg

I Y

=

mjm}

Then using the orthogonality property of the Legendre Series:

%)

Y= i J Hﬁ?_lﬁ'j(x)h(x)dx
X' =1)

Now define the following row vector:

1063)) = [Lo6(1)) Lilo(1)) LaGo()) - Loal6(1)) - La(%(i))]

With S, as defined in section E-4.3.2 ad,,() as defined in section E-3.3.2 the
solution forY can easily be found:

M O
D2oo... 0 g
0 4 0
b = 0 o O
o 2 0
Epo5 oD
= 0

G =0 2 B
N N
H) 0
- 0
0. 0
0 .0
O 0 0 2n-1n
0 2 0

YT= 300600 10600 = DISAu(h)G

E-4.3.4 Waveform Smoothing

There is no obvious method for performing waveform smoothing in the Legendre
Series spectral domain. Instead, the waveform should be converted to a polynomial
expansion and the methods of section E-4.2.4 employed.
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E-4.4 Chebyshev Series

E-4.4.1 Trigonometric and Exponential Functions

There is often no direct way of evaluating a trigonometric or expontential function
of a Chebyshev Series. Instead, the function is performed on a data series converted from
the argument Chebyshev Series. The resulting polynomial is then reconverted back into a
Chebyshev Series.

E-4.4.2 Integration and Differentiation

Differentiating a Chebyshev Series can be done easily by differentiating the
recursion formula for the Chebyshev Polynomials. Recall:

Tia(X) = 2XTi(x) = T .4(x)

Differentiating:

dT . (x) __ dTi(x) dT; _4(x)
dx 2 dx *2T () dx

where

dTy(X) _
dx =0

dTy(x) _
dx =1

The goal is to generate the followimgx n matrix:

EdTO(X) dTy(x) dTy(x) dTn—l(X)E
0 dx dx dx dx [

Apr =

The columns ofAy; can be solved recursively once we define maiy for
multiplying a Chebyshev Series vector hy

XTi(x) = % (Ti_1(X) + T 4(X))
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1 0
Ebéoo 0 07
O L O
1 0 = 0 0 oO
0 2 0
0 1 O
[050% 0 o
O . O

O
g)oio 0 0f
0 0

AXTIE. E
O ‘0
n .0
0 1 O
0 0 0 0 5 0O
O =
10

g)ooo 0 >f
O ;0
0 0 O =~ o0
0 2 0

Note that the last row oA,; has been eliminated to make the matrix square. This
will not cause any problems since in the recursion formula which follows, the last
coefficient of the vector multiplyind\,; is always zero.

Let Ap(:,)) represent thgthe column ofAy ;. Let| be then x n identity matrix.
The recursion formula states:

Apr(i +2) = 2A0 A0 (L1 + 1) + 2101 +1) = Ape(1)
i<isn-2

OnceApr has been constructed, it can be used to calculate derivative$V hatlY
be vectors of Chebyshev Series coefficient of sizeThen the following statements are
identical:

_dw
Y_dx
Y = A,;W

Of course thenth coefficient ofY will always be zero since theth row (as well as
the first column) ofA; will always be populated with zeros.
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Integration is a bit more complex. In general, the problem is to solve the following
equation:

Y=Y, + J wdt

T=-1

First, then+1 x n indefinite integral matriX§ should be found. The easiest way of
generatingS; begins by adding an additional column Ag; using the same recursion
formula to form then x n+1 matrix Apr;. S is simply the pseudo-inverse 8f+;:

Sr= (AI-DrTlADTl)_lAI-DrTl

The next step is to evaluate the integrakat-1. This can be done by multplying
the following row vector by5,, :

X.=[1 -1 1 -1 ... ()"Y
S, =X4Sy

The first row of S; contains all zeros. If this row is replaced bg, and the
resulting matrix calledS,;, we have all the pieces for calculating the integral of a
Chebyshev Series:

Y=5W+Y,

Of course, the vector may have to be truncated or padded with zeros as required.
E-4.4.3 Switching Functions

Switching functions for Chebyshev Series can not be evaluated as easily as the
switching functions for Legendre Series due to the weighting functipl for the
Chebyshev Polynomials. Recall:

1] )
C, = T[lel_— XZdX
2 [ 00T 1)

————dx
) Vi-x?

m

The situation is not hopeless due to the following integral equations:
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J Vl_d)—( = sin(x)

dx— —/1-x2

|7

X" _@mig—— m rir=-1!  ,_, sin'(x)O
jvl—_xd (m|)2 T rgl 22m—2r+1(2r)!x + 22m E

x2m+1 R L(m')2 m-ry2r
le_—xde_ Vi-x r§1(2m+1)!(r!)2r §

Thus if f; is the Chebyshev Series representation of jthepiece of Chebyshev
Series wavefornY andx(j) is thex coordinate of the ending point of thth piece, then
we can state the following:

-<

1]
D e
Ooooooooon

=

O

Xo(i)

2m Fi(X)Tm-1(x) 1(X)

Yo== dx
=t (r| ) Vi-x?

The process should now be clear:

1. Converff;(x) to a polynomial representatidg(x)
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2. Multiply f;(x) by the polynomial representation fay(x) and call the resulting
polynomialf,(x).

3. Use the above integral equations to evaluate atx,(j) and x = X,(j-1) the
integral offy(x) term by term to form th¢th component o¥; called;.

4. Sum upY; overj to producey,.

While the above process will produce tloerrect values forY;, the following
method is much easier to calculate and produces nearly identical results:

1. Converff;(x) to a Legendre Series representatig(i)

2. Calculate the Legendre Series Representatiomn Y with the methods of section
E-4.3.3.

3. Converty, to the Chebyshev Series Representatfon
E-4.4.4 Waveform Smoothing

There is no obvious method for performing waveform smoothing in the Chebyshev
Series spectral domain. Instead, the waveform should be converted to a polynomial
expansion and the methods of section E-4.2.4 employed.
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Appendix F: Model Development

The following electrical power system models have been develped in support of
WAVESIM:

Three Phase Synchronous Generator
Voltage Regulator

Prime Mover

Three Phase Switch

Transmission Line

Constant Impedance Loads
Reduction Gear

Propeller

Ship Dynamics

Pulse Generator

Induction Motor
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F-1 3 Phase Synchronous M achine M odel

Two models are presented for simulating a three phase synchronous model. The first
expresses the voltages and currents in terms of a rotating reference frame (dqO) rotating at
the base frequency. This model is suitable for studies where the voltages and currents are
balanced, nearly sinusoidal, and near the base frequency. For fast transients or unbalanced
operations, the actual instantaneous values for the voltages and currents should be used (abc
frame). Both models are very similar in that the terminal values are transformed to a
rotating reference frame alligned with the rotor of the machine (Park’s Transformation)

F-1.1 DQO Modél

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type
Stator Direct Vp, (import) I, (export) (1) Normal

Stator Quadrature Vo (import) | (export) (1) Normal

Stator Zero Sequence  V, (import) I, (export) (1) Normal
Mechanical W, (import) T, (export) (0) Normal

Field Voltage Vep (import) Information

Stator D-axis Current I (export) Information

Stator Q-axis Current | o (EXpOTTt) Information

Stator 0-axis Current I, (export) Information

Field Current I (export) Information

The importx;,,, and expork.,, vectors are defined by:

OVe O Oo O
DVQD D|QD
=t

&mp=§Vo§ Ol O
Ij‘/FD|:| _EIFE
0 0 X@(F,—D]_D
D("‘)mlj mD
SDID

0. o

e

o]
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Parameters

Synchronous Reactance (PU)
Negative Sequence Reactance (PU)

Transient Reactance (PU)
D-axis Subtransient Reactance (PU)

Q-axis Subtransient Reactance (PU)
Armature Leakage Reactance (PU)

Transient Open Circuit Time Constant (seconds)
D-axis Subtransient OC Time Constant (seconds)
Q-axis Subtransient OC Time Constant (seconds)
Armature Time Constant (sec)

Inertia Constant (sec)
Pole Pairs

Field Current for no load rated voltage (amps)

Base System Frequency (rad/sec)
Base System Angle (radians)

Base System Voltage (volts)
Base System Power (watts)

Base Machine Voltage (volts)
Base Machine Power (watts)

rotor angle wrt to synchronous frame (rad)

D-axis flux-linkage (PU)

Q-axis flux-linkage (PU)

Q-axis voltage behind subtransient reactance (PU)
D-axis voltage behind subtransient reactance (PU)
Q-axis voltage behind transient reactance (PU)
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Equations

Constant Definitions

Base Quantities

Other Constants

| —EP_SB
S 3Vg

TSB(,OSB

| —g%
MB — 3V|\/|B

_ PoPue

Tug = .
lg = i (X = Xa)

Pus
Vg =——

I
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Angle Calculations

= j(wos ~ w,p,)dt + O
© = S(Ghs ~ WuP,) + Og
Co=c040)

S, =sin(©)

Variable Rotation and Scaling

<

1

O
s
(I -

O

Vo O

Oy O

v =0
Dv ]

0

FD[]

Ve \1(c M 0
DvMB € —yMES)

Ve
@vMB EMES)  EMC) O

(I
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Solving the electrical dynamical equations

The five electrical dynamical equations must be solved simultaneously. Since the
Integration Matrix and Multiplication Matrix are linear matrices, the entire problem
becomes a linear process. Hence the system of equations can be represented by a matrix
equation.

First define the integration and multiplication matrices
jx(t)dt:SHxS ; S "N xm "

xOy=M(y)x ; Mm """

Now we define the system of equations

0 142 _sv(.p) S 0 o U
O T P T O
0 < < 0
Uavi(w | +— 0 = o U
|:| ] 7] ] |:|
X' — X4 X4 s

_O_ N _S g
A D S Tdo’I n O I STdo’I Xd” O Tdo’I D
|:| v |:|
0 o0 s 0  I1+S=—2%, 0o O
B T %q @ Xq B
0 0 0 _ga-t 0 | +S—10
| Tao Tao ]

Q

X

1]
o B
OOOOmo oo

o
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U
U
U

X
0 0 =g
rf|:|

0 0 0f
0 w, 0 O

0 0 O

0 0 O

[(Whs
0
20
BV:@
0
0
0o
0

(I I B 0

b=B\Vv+Bss,
x=A"
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Calculating Export Variables

First the currents in machine reference frame

Oq0

0

i, =L

e |:i0|:|

a o

]
01 1 0

— 0 -—— 0 0
DXd” an |:|
U 1 1 U
Ho = 0 — 0o H
C=g X % 0
0o 0 0 0 0 O
O x O
0o o0 -—x o X
0 Xad (X¢ = Xat) Xad (X = %) ]
i.=Cx

e

Now the currents in system reference frame

Up O

Ly, O

|DD
eD|D
BD

U

ol O
07 MG "ME&) 0 0g
o | ISB o
EMS) EMC) 0 og
Ri_D ISB D
0 | |
o O 0 # 0
O B0
o O 0 0 I
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Torque Equation
Tepu = quiq - quid

_2Hp,dw,
oo, dt

acc

Tepu =M (lle)Iq -M (lqu)Id

Structural Jacobian

The structural jacobian for the DQO model is given by:

Z
o

N[O
NO

o
NG
NU
Ng
0]

oZ2Z2Z2oZ2
O O O O o O
o 222022

Jacobian Calculations

Calculating the jacobian of the export variables with respect to the import variables
is straight forward with the exception of the partials with respect to the mechanical
frequency. First of all, nothing depends ¥ hence all of its partials are zero. In the
following derivations, the Device Jacobian is partitioned such that the voltages and
currents are split from the mechanical speed and torque.

l.=RCAT(BRV +Bss)

e—

g CA™'B
av R| VR\/
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Calculating the partials with respect to the mechancial frequency:

AX=BRV +Bs,

0
ox 0A R’V

+ B
Aacom 0w, VoW,

0 d 0
a_X: _1|:BV_R/ _a_Axl]
0wy, 00w, dw, O

a oR
=RC-——+-——Cx
acom owy,
where
00 -, 0 0 Og
o £ 000G
a(,l)m_D
S0 0 00 cg
0o 0 0 0 O
and
00 _
o, P
| Vs Ve [
DVMB VMB |:|
R _ MCISp. “EMS)Sp. 0 0
S~ v MCISD, EM(SISp, 0 o
O
. 0 0 0 dg
O 0 0 0 O
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Olwe
O

6R| — IMB IMB
H
0 0 0
B 0 0

The Torque equation Jacobians are given by:

0T, Tg 0Ty,
o Ty OV

oT,

epu

oy ox
Sy =l 0 0 0 g
alqu_ 6x
v 0100 Q5
aid_I 0 o di,
av‘[ qav

-0 1 0 oaie
av‘[ ]av

Now with respect to the mechanical frequency:

0T, Tg T, 0T,,0
_;SBD__ epD

00y Tys 000, 0wy O

0T, 2HP, 5

0wy, O

aT o,

00,
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I
7 M(&)Sp,  —-M(Co)Sp,
=B =B

o

M) 2 mi) 2 mw) 2 m
o= M) 5+ M) 5~ M) 25 =M i)

u a-q . a-d .
L M(wd)ﬁ+ MG 3, M(wq)ﬁ— M)

(@] o
OOOdd

Sy

g
oV

My
0wy,



0y

=

0wy,

oy,

0wy,

oooq%m

al,
v,
alg
v,

o

0O O

oT,,
EYA
al,
EYA
alg
EYA

0O O
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=[0I 0O qacom

di,

Oi,
0wy,

O

dl, dlpQ
Ve 0w,
O

dlg dlg
Ve ow,D
0 0g
0T, oT,0
a_VF ame
o, dly0
Ve 0wy
Ay 00
Ve 0w,
0 0[O



F-1.2 ABC Model

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type
Stator Phase A V, (import) |, (export) (1) Normal

Stator Phase B Vg (import) I (export) (1) Normal

Stator Phase C V¢ (import) |- (export) (1) Normal
Mechanical W, (import) T, (export) (0) Normal

Field Voltage Vep (import) Information

Stator Phase A Current 1 ,, (export) Information

Stator Phase B Current g, (export) Information

Stator Phase C Current |, (export) Information

Field Current |- (export) Information

The importx;,,, and expork,,, vectors are defined by:

OVaO o0

Uy, U BIQB

Xip = %ch Ol O
D‘/FDD _ EIFE

O O Xep = A ]
D("‘)mlj mD
SDID

0.0

e

o]

Parameters

All Parameters are identical to the DQO Model

States

All States are identical to the DQO Model

Equations
Constant Definitions

All Constants definitions are identical to the DQO Model
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Angle Calculations

For this model, the angle is the actual rotor angle of the synchronous machine:
0= J WP, dt + Og,
© =Sw,p, + Oy
Note: When calculatin®, it would be wise to limit its rangetim

Variable Rotation and Scaling

To convert from the&/ vector to thev vector, Parks transformation should be used:

OVa O
Ly O
v=0"0
DVCD
U
FD[]
O _2n 2_11@ O
ooy whofo- T witofb- T o ¢
21 . 21
ey w3 wp T o g
 Ne D M(sin(®)) in 3 in 3 0 .
RVl 1 1 1 0 0
O 2 2 2 O
U 3V,,.J
O o 0 0 B0
|:| 2VfB|:|
v=RV

Solving the electrical dynamical equations

The electrical dynamical equations are solved in exactly the same way as for the
DQO model.
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Calculating Explicit Variables

The only difference for calculating the explicit variables are the following
matrices:

Ola O

Oy 0

Ie:E|CD

BFDB
0 M(cog0)) -M(sin(©)) 1 0p
Moo -2 MBI 1 oc
2 o 2 w2 1 o
% 0 0 0 Ilﬁé

Structural Jacobian

The structural jacobian for the ABC model is given by:

N N N N
NO
ND

N
N

z2Zz2zzZz22z2Z2
Zz2Zz2zzZz22z2Z2
z2Zz2zz2z2Z2

Jacobian Calculations

The only differences for calculating the jacobian matrices are the following:

00 _
o, P
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D—M (sin@)sp, -M %in@e _an Eﬁpp

5
=0 _

oo Mo %9 SHee
0
0

R, _ Vg

D ~M(sin(©))Sp,

Putting the Jacobian all together:

—M(cog@))Sp,

|MBD M%un@e——gﬁ ‘MH: %G_Z_HES
a“’*ﬂ '$D—M§|nge+—§5pp ‘MH: %G“L_Espp

. 211 O
—M%m@@ +§ ESpp OD
0

211 0

~M_bosb+ b, 0
0 ¢

0o, al, al, adl, a0
DavA Vg Ve Ve dw, U
DGIB al,  aly 9l alBB
DavA oVg 0Ve 0Ve ow,U
Sl ale e A dlep
DavA Vg Ve Ve OO

- rpT 0T, 0T, 0T, 0T,g
OOV, oVs Ve oV 0wl
EGIA al, a, al, alAB
OV, oVe 0Ve oV 0wy, [l
EG'B oy dlg olg alBB
OV, oVe Ve Ve 0w
Ec’)lc al.  dlc  alg a|cg
Ve Vg Ve 0V 0O
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F-2 Voltage Regulator M odel

This is a simple voltage regulator model. The voltage regulator is assumed to be of a
Pl type controller. This design does not have any clipping on the output waveform to
ensure the field voltage is kept within a reasonable range. This model is intended for single
generator operation since it has no provision for reactive power sharing with paralleled
generators.

F-2.1 DQO Modé

Interface Variables

Terminal Potential Variable Flow Variables Type

Line Direct Voltage Vp, (import) Information
Line Quadrature Voltage V, (import) Information
Reference Voltage V.« (import) Information
Field Voltage Vep (export) Information

The importx;,,, and expork,,, vectors are defined by:

Vo O Xop = [Vep]
Ximp = @Q@
ref[]
Parameters
K, Integrating factor (1 / sec)
ko Proportional factor (PU)
Kpoo Voltage Magnitude Conversion factor (PU)
States
Vigs Field Voltage
Equations

Calculate the terminal voltage:

Calculate the error voltage:
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Calculate the Field Voltage:
VFD = j kIVerrdt + kpVerr + Vde

Structural Jacobian

The structural jacobian for the DQO model is given by:

Jos=[N N L]
Jacobian
aVFD_
av, ~ Stk
aVFD_
av, = KSkl

aV, 0V, aV,

Vg 0V, 0V,

Note the partials of Mwith respect to ¥ and \, must be determined from the square root
function:

N .V

N, oy,

N,V

N, ey,
The device jacobian is given by:

_DaVFD 0Vep  OVep[

b =0 0
D |:| 6VD 6VQ avref |:|

- 285 -



F-2.2 ABC Model

Interface Variables

Terminal Potential Variable Flow Variables Type

Phase A Voltage V, (import) Information
Phase B Voltage Vg (import) Information
Phase C Voltage V¢ (import) Information
Reference Voltage V.« (import) Information
Field Voltage Vep (export) Information

The importx;,, and expori,,, vectors are given by:

VA Xop = [Vep]
[l
BB
mp DVC O
5/ l
ref[]
Parameters
K, Integrating factor (1 / sec)
ko Proportional factor (PU)
Kagc Voltage Magnitude conversion factor (PU)
States
Vigs Field Voltage
Equations

Calculate and subtract out the DC offset of the common potential:

_VatVe+Ve

V, 3
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Calculate the Terminal voltage

Z
A kABc'\/é (Vag DVag + Vigo Vg + Vo Vo)
Calculate the Error voltage:

Calculate the Field Voltage:
VFD = j kIVerrdt + kpVerr + Vde

Note 1: Derivation of Terminal Voltage:

Assume phase voltages are balanced three phase:

Vo = V;€040)

2
Vy, :vTco%a +—Tﬂ

3

21
——

2

2 2 a2 VT
Vo + Vo + Vg = ) (1+coq20) +

1+coq20) CO%%“ ﬁ— sin(20) sinﬁ%ﬂ @+
1+coq20) CO%%[ ﬁ+ sin(20) sinﬁ%"@

3
VAZO + Véo + ch:o = EVTZ

Structural Jacobian
The structural jacobian for the ABC model is given by:

Jbs=[N N N L]
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Jacobian

0Vep _
v =Skl
0Vep _
v, = Skl

oV, 0V, 0V,

Ve AV, 0V,

Ve AV, Ve

Note the partials oY/, with respect tov,, Vg, andV. must be determined from the square
root function:

N Vw2
WV, "V, V3
N Verf2
Vg, ¢V, V3

N Vo2
Vg TV, V3

oV, 20V, 1 oV, 1 oV,
oV, 30V, 30Vs 30V

oV, _ 1 oV, +2 oV, 1 GAYA
Ve 30V, 30Ve 30V

oV, _ 1 oV, 1 oV, +2 GAVA
Ve 30V, 30V 30V
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The device jacobian is given by:

] _DaVFD OVep  O0Vep 0V
0 "HV, Ve Ve VO
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F-3 Prime Mover

This is a rather crude model of a PI controller on a prime mover. The dynamics of the
controller are assumed to dominate the response of the prime mover.

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type
Mechanical W, (import) T (export) (0) Normal
Information W« (Import) Information

The importx;,,, and expork,,, vectors are defined by:

X _Eﬁl)m% Xop = [Tnl
™ Houl]

Parameters

K, Integrating Torque factor (1 / sec)

Kp Proportional Torque factor (PU)

Whs base frequency (rad/sec)

Psg base System Power (watts)

Pus base Machine Power (watts)
States
Ths mechanical torque
Equations

Pus r ki ko U
To= 50 (@~ @)dt +—— (W~ @) O+ T,
n= o ] o @ I+ (@~ @) Tre

Structural Jacobian
The structural jacobian for the Prime Mover model is given by:

Jos=[L L]
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Jacobian
0T, Pus k
a("L)ref PSB ('Oos

T, 0T,
0w, 0wy

0T, dT.,.0O

°~ Hown 9
F-4 Three Phase Switch
F-4.1 DQO Model

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type
TD1 Vo, (Import) |5, (Export) (1) Normal
TQ1 Va: (Import) | o (Export) (2) Normal
TO1 Vo, (Import) l o (Export) (3) Normal
TD2 Vp, (Import) | 5, (Export) (1) Normal
TQ2 Vg2 (Import) | o2 (Export) (2) Normal
T02 Vo, (Import) l oo (Export) (3) Normal
SW Sy (Import) Information
All Interface variables are on a Per Unit (PU) Basis
The importx;,, and expori,,, vectors are given by:
VpiO Oo:0
EVQlD a‘?lm
X = DV01E X, = E‘m%
™ S/DZD P D2[]
Oy 0O 0 _ 0o
q/QZD EFQZD
[Vo2[] 02[]
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Parameters

Gon On Conductance (PU)
Gyt Off Conductance (PU)
States

There are no states for this model.
Equations

The equations for the switch are very simple. First, we define the conduc&ate
the waveform:

If Sy>0
Then G =G,
Else G =G,

Now Generate the Conductance Mai@y:

OM(G) 0 0 M(-G) O 0 o
0o MG O 0 M-G) 0
o Ho 0 M@G) 0 0 M(-G) of
> IM(-G) 0 0 M(G) 0 0 oJ
B 0 M(G) O 0 M@G) 0 og
0 o 0 M(-G) O 0 M@G) o

The export variables are simply:

X@(p = GDximp

Structural Jacobian

The structural jacobian is given by:
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M 0 0 N 0 0 N

o N 0 0 N 0 NO

, . 0N 0 0N Np

"IN 0 0 N 0 0 NO

0 N O ON O Nf

M O N 0O 0 N N

Jacobian Calculations
The jacobian matrix is very similar 1Gp:
0G
SM@G) 0 0 M(G) 0 0 M(Vp - DZ)GSNE
O cU
B 0 M(G) 0 0 M(-G) 0 M(Vy- Qz)aswD
O aGD
0 o 0 M(G) 0 0  M(-G) M(Vy,- VOZ)asN
Jy =
-G) O 0 M(G) 0 0 M(VDz—Vm)gND
O G
B 0 M(-G) 0 0 M(G) 0 M(sz—le)Eg
O aGD
0 o 0 M(-G) O 0 M(G)  M(Ve= Vo) 5 SN
O

WheregN is determined by tHé-Then-Else function.
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F-4.2 ABC Model

Interface Variables

Terminal Potential Variable
TAl V1 (Import)
TB1 Vg (Import)
TC1 V¢, (Import)
TA2 V. (Import)
TB2 Vg, (Import)
TC2 V¢, (Import)
SW Sy (Import)

Flow Variables (KCL Group) Type

| o1 (EXxport)
I g, (Export)
| c; (Export)
| o, (EXxport)
I s, (EXxport)
| o, (Export)

The importx;,, and expori,,, vectors are given by:

Va0
L
_ Ve O
Ximp - U
A2[]
@BZB
c2l]
Parameters
Gon On Conductance (PU)
Gyt Off Conductance (PU)
States

There are no states for this model.

Equations
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The equations for the switch are very simple. First, we define the conduc&ate
the waveform:

If Sy>0
Then G =G,
Else G =G,

Now Generate the Conductance Mai@y:

OM(G) 0 0 M(-G) O 0 o
0o MG O 0 M(-G) 0
o Ho 0 M@G) 0 0 M(-G) of
> IM(-G) 0 0 M(G) 0 0 o
B 0 M(G) O 0 M@G) 0 og
0 o 0 M(-G) O 0 M@G) o0

The export variables are simply:

X@(p = GDximp

Structural Jacobian

g

1
JEZEIEZ
oZooZo
Zo0o0Z2o0oo
oo Z2o0oo0ZZ2
oZooZo
Zo0o0Z2o0oo
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Jacobian Calculations

(&
o
1
I:II:II:II:II:II:IDE:DI:II:II:IDD
T
0

The jacobian matrix is very similar 1Gp:

[
<
RG)

o

o

0G
WheregN

0 0 M(-G) O 0
M@G) O 0 M(-G) 0

0 M@G) O 0 M(-G)

0 0 M@G) 0 0
M(-G) 0 0 M@G) 0

0 M(EG) O 0 M(@G)

is determined by tHé-Then-Else function.
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oSy
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M (V|31 - VBZ)

M (VA2 - VAl)

M (VBZ - VBl)



F-5 Transmission Line
DQO Mode
I nterface Variables

Terminal

Potential Variable

Vo, (Import)
Vo (Import)
Vo, (Import)
Vp, (Import)
Vg2 (Import)
Vo, (Import)

Flow Variables (KCL Group) Type

|5, (Export)
| o1 (Export)
|0 (Export)
| 5, (Export)
| o2 (Export)
| oo (Export)

The importx;,, and expori,,, vectors are given by:

Parameters

R
X

States

Resistance (ohms)
Reactance (ohms)

(There are no states for this model)

Equations

Constant Definitions

G= |
x2+R2

= — |
x2+R2
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(1) Normal
(2) Normal
(3) Normal
(1) Normal
(2) Normal
(3) Normal



Calculate the Export Variables

NG -Y 0 -G Y
ay G 0 -Y -G
D |
udo 0 - 0 0
%o = @—G Y 0 G -Y
U-¥Y -G O Y G
D |
Uo - 0
0 r
X@(p :‘]Dximp
Structural Jacobian
The Structural Jacobian is given by:
M D 0 D D 0p
(b D 0 D D 00
b o b o o bpHE
J..=0d U
O D 0 D D oO
a: D 0 D D og
M O D 0 0 Df

Jacobian Calculations

The matrixJ, is the Jacobian matrix.
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ABC Mode

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type
Tar V1 (Import) | o1 (EXxport) (1) Normal
B1 Vg (Import) I g, (Export) (2) Normal
c1 V¢, (Import) | c; (Export) (3) Normal
Tao V. (Import) | o, (EXxport) (1) Normal
B2 Vg, (Import) I s, (Export) (2) Normal
c2 V¢, (Import) | o, (Export) (3) Normal
The importx;,, and expori,,, vectors are given by:
VO Om0O
Vaip dep
X = Wm% _ [1(1%
" B/AZD aAZD
gjszg élszg
c2[] c2[]
Parameters
R Series Resistance (ohms)
G Parallel Conductance (mhos)
L Inductance (henries)
States
[ Al Phase A Inductor Current
ls Phase B Inductor Current
I Phase C Inductor Current
Equations

Each of the three phases can be treated independently of one another. In the

equations which follow replace a subscripteavith the appropriate phase letter:

First write the equations describing the phase:

| 0 oV, D
BR S EDIXH] D “
O —2-cOH,J" DO G+— ID
O L O XLOD
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Ny 0 O M 0 0 MO
Ul O

o - e Ital 6 oo ]

o R o R O ol

Manipulating the first matrix equation, we can get an expression for the terminal 1

current:
s o -Heeh
GiV—HES+RG+IﬁﬁE+G "+ G @
VO

Iyt = GivE/X2§
XLo[]

Once this is known, the other variables are easy to calculate:

Vin = Vi —Rlyy

_ | Vi
IXL -7 R+G XN+E+GVX2

o = ~lxs
Structural Jacobian

The Structural Jacobian is given by:

o oo nr
roonr Oo
oo oor
o oor o
[
O
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Jacobian Calculations

The Jacobian Matrix can be directly constructed from the first eleme@{,of

1
G, = HFS+RG+I@ @§+Gﬁ

0Gy 0 0 -Gy 0 0 O

B 0o G, O 0 -G, O B
oo 0 Gy 0 0 -Gy
b=, o 0 G, O 0 g
B 0 -G, O 0 G, O B
0o 0 -G, O 0 Gup
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F-6 Constant | mpedance L oads
DQO M odel

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type
Tp Vp, (import) I, (export) (0) Normal
To V, (import) | (export) (0) Normal
T, V, (import) I, (export) (0) Normal
The importx;,, and expori,,, vectors are given by:
Vo0 o0
Ximp = Q% X@(p = EQ@

Vo[ o]
Parameters
R Load resistance (ohms)
X Load reactance (ohms)
Gyng Zero Sequence conductance to ground.
States

(There are no states for this model)

Equations

First calculate the admitance

R
G=
R?+ X2

3 X
R?+ X?

Now calculate the Admitance Matrix:

G -Y 0@
- |
G, = E’Y G ofb
M 0 Gyug
X@(p = Gviximp
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Structural Jacobian

The Structural Jacobian is given by:

(P D 0pg
Jhs=fp D 07
M 0 Dpg

Jacobian Calculations

The jacobian matrix is th&,; matrix.
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ABC Mode

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type
Th V, (import) |, (export) (0) Normal
Tg Vg (import) |5 (export) (0) Normal
Tc V¢ (import) |- (export) (0) Normal
The importx;,,, and expori,,, vectors are given by:
[VaO a0
Ximp:EjBﬁ X@(pZEBﬁ
c] c]
Parameters
R Series Resistance (ohms)
G Parallel Conductance (mhos)
L Inductance (henries)
Rano Resistance of center to Ground (ohms)
States
[ Al Phase A Inductor Current
ls Phase B Inductor Current
I Phase C Inductor Current
Equations

This load model can be considered to be a transmission line where all the terminals of one
side are connected together to a resistor going to ground. As such, we can use some of
the derivations from the transmission line model:

1
- Bseroni]
G, =Gy S+Gﬁ
L
lx =G Vx = GV + Gugluo

Vio = (Ia + 15 +1c)Renp
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This can be rewritten by defining the following matrix:

[l +RsnpGay) Reno Gia RenoGn O
ABC % RGND 11 (l +RGNDGll) RGNDGll
] RGND 11 RGNDGll (I + RGNDGll)D

Which allows the following equation to be written:

a0 6, O OVaO Gy, O 0 a0

R 1

cl] DO 0 GnD ] DO 0 Gslﬂ cLo[]

Or if we rewrite the equation:

a0 Gy O 0 VA Gy O 0 a0

E@ GABCEO G, oﬁgjﬁm;;c@o Gs, O@EB”@

0 Gup 0 Gydew

The inductor current for phasécan be determined from:

Vi = Vi —RIy

| V.
Iy = _H§+G XN +EX+GRGND(IA+ lg +1¢)

Structural Jacobian

The structural jacobian is given by:

0 L LQg
hs=gk L Lg
0 L LO
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Jacobian Calculations

The Jacobian Matrix is given by:

Gy O 00
b= Ggéc% 0 G, O %
0 0 0 GnD
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F-7 Reduction Gear

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type
S1 w, (export) T, (export) (0) Normal
S2 w, (import) T, (import) (0) Normal

The potential variables are measured in radians/second while the flow variables are
measured in Newton-meters.

The importx;,, and expori,,, vectors are given by:

e -
" ETZD ’ ETlD
Parameters
n, Number ofteeth on shaft 1.
n, Number ofteeth on shaft 2.
n Efficiency of Reduction Gears.
States

There are no states for this model.

Equations

The rotational speed of the shafts are proportional to the gear ratio:
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The transmitted torque however, must be scaled by the efficiency. Which side of the
equation the efficiency applies depends on the direction of the power flow:

if T,0,>0
then T n, T
1~ Ezr] 2
else n,
T,=—T,
NN

The first zero crossing of the power should be passed back to the system as a

suggested recalculation time.
Structural Jacobian

The structural jacobian is given by:

0
JDszﬁ N

Jacobian Calculations

The jacobian is given by:

O

- O
UgT, oT,U
0— =0
0w, dT,q

The partials ofT, depend on the partial derivatives of tHethen-else function. If

the direction of the power flow remains constant over the interval, then the partials are

given by:
T,

acoz_o

o, T,
T, T,
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F-8 Propeller

The relationship between the torque, angular speed, forward velocity and forces on a
propeller are highly complex and nonlinear. While much information is known about the
steady-state operation of propellers traversing in the forward direction, little information is
available for nonstandard operating conditions. The classical approach is to géhesale
andK, vsJ curves where:

F = K(J)pD*n?
T, =Ko(d)pD°n?

where the variables are described in the following sections.

The classical approach works well wh¥fy (speed of propeller with respect to the
fluid) and n (RPM of shaft) are both positive andis large enough to bring (advance
coefficient) below about 1.5. Outside of this range, little data is provided for most
propellers. The classical approach breaks down completely when the shaft speed is zero
andJ is infinite. Furthermore, there is no way to differentiate between backing dawn (
andV, both negative) and having forward way om &ndV, both positive). The method
used for this model is better suited for simulation studies because it essentially uses the
angle of attack on the propeller blade as the argument for the thrust and torque coefficients.
This model is based on work conducted at the Naval Ship Research and Development
Center, Annapolis, MD by D. W. Baker and C. L. Patterson and reflects data and theory
developed by I. Ya. Miniovich.

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type
Mechanical W, (import) T, (export) (0) Normal
Hydrodynamic u (import) F (export) (0) Normal

Note: units argadians/second, Newton-meters, meter second, andNewtons

The ImportX;,,, and ExportX,, vectors are defined by:

- 309 -



(00,0 'm0
Xmp=0 0 Xop =0 O
" gup " OFO
Parameters
D Diameter of Proprfeters)
w Wake Fraction (PU)
o Density of water kg/nr)
C0 Thrust Coefficient matrix (unlimited rows by 2 columns)

first column is® inradians[-1t 1i
second column is Thrust Coefficient in PU.

Co0) Torque Coefficient matrix (unlimitd rows by 2 columns)
first column is® inradians[-1t T{
second column is Torque Coefficient in PU.

States
(There are no states for this model)
Equations
V,=(@1-w)u
L n
21

© =atanZnD,V,)
F =-C(@)pD*(V; +n’D’)
T, = Co(@)pD*(V; +n*D?)

Normally, C() and Cy() are specified as data points. Hence some type of
interpolations scheme is needed to determine the value of theses functions at intermediate
points, as well as the value of the first derivative.

Device Structural Jacobian

The Device Structural Jacobian for all waveforms is given by:
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=By N

Calculate partials with respect to intermediate variables

Jacobian Calculations

oF

oF
au - Way

T, oF
u -y

oF _10F
dw, 21an

0T, 10T,
dw, 2mon

Calculate the partials

oF __ DZEIZCT(G))V +(V2+n’D? ?\f@)g

v,
S—E ~pD* HZCT(G))D n+(V;+nDY) CT(@)E
g_\Tg . posgch(e)vp o\ “ZDZ)GEQ—\Z@E
%L_ PDRC©@)D7N + (Vi +1°D )aCQ(e)E

Calculate the partial g  with respect¥g andn.

1

©
ov. v, 7
P l+gon
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0

on .. V2
1+45o

Of course, the partials of(©) and Cy(©) with respect to© must be determined
from the interpolation scheme used.

Putting all of this together:

10T, 0T.0O
W, Ju
=00 oF
0 o
Pw, 0up
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F-9 Ship Dynamics M od€l
Interface Variables
Terminal Potential Variable Flow Variables (KCL Group) Type
Ship Hydrodynamics u (import) F (export) (0) Normal
Velocity u is measured in meters/second while foFces measured in Newtons.

The importx;,, and expori,,, vectors are given by:

Ximp = [U] XPXD = [F]
Parameters
o Density of Salt Water (kg/f) 1025.9 kg/M @ 15° C.
v Kinematic Viscosity of Water (fsec) 1.1810° m%/sec @15° C.
G Acceleration of Gravity (m/séx 9.80665 m/sec
L Length of Ship (m)
Ag Surface Area of Ship (M
m Mass of Ship (kg)
Mgy Added Mass Multiplier (PU) (normally between 1.0 and 1.10)
C, Correlation Allowance
Ci(RY Matrix of Frictional Drag Coefficients (2n) or (3xn)

column 1 are Reynolds Number Values

column 2 are Frictional Drag Coefficient Values

column 3 are optional first derivative values of the curve

Note: Values should be provided for negative Reynolds Numbers

C.(F) Matrix of Residual Drag Coefficients &) or (3xn)
column 1 are Froude Number Values
column 2 are Residual Drag Coefficient Values
column 3 are optional first derivative values of the curve
Note: Values should be provided for negative Froude Numbers

States

There are no states associated with this device
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Equations

The basic equations are given by:

_uL
Re= Vv
Fr:L

VGL

C=CGR)+C(F)+C,
F=Luwac, +m,m®
2 dt
The only potential difficulty is performing the evaluation of the drag coefficients
Ci(R,) andC,(F,).
Structural Jacobian
The structural jacobian is given by:
Jps = [N]
Jacobian Calculations

3. =AM EEmERC R, L S EI R omwmc ®ryH+
D‘zASD Ov 0O dR 0O VLG 0O dR @ ‘RED

m,,mS™
dc,(F,)

. . . : dc(R,) . .
where S is the integration matrix andﬁ —!F— ) must be determined by either

differentiating theCi(R,) (C.(F,)) curve or by interpolating the third colum if so provided.
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F-10 Pulse Generator
Interface Variables

Terminal Potential Variable Flow Variables Type
VO V (export) Information

The importx;,, and expori,,, vectors are given by:

Ximp = [l XPXD = [V]
Parameters
Vit Value ofV when off
Von Value ofV when on
tp Matrix of pulse times (2n,):
column 1 are pulse on times.
column 2 are pulse off times.
unlimited number oh, rows.
States
None
Equations

If the timet falls between an on and an off time ther= V,,, otherwiseV =V .

If a discontinuity falls within the time interval, the earliest discontinuity time should
be passed back as a recommended recalculation time. The time of the next discontiuity

after the time interval should also be made available to the system solver.

Structural Jacobian

There is no structural jacobian matrix for this device.

Jacobian Calculations

There is no jacobian matrix for this device.
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F-11 Induction Motor
F-11.1 ABC Mod€

Interface Variables

Terminal Potential Variable Flow Variables (KCL Group) Type
Phase A V, (Import) | » (Export) (1) Normal
Phase B Vg (Import) |5 (Export) (1) Normal
Phase C V¢ (Import) | (Export) (1) Normal
Neutral V, (Import) |, (Export) (1) Normal
Mechanical W, (Import) T, (Export) (0) Normal

Voltages are in volts, currents in amps, angle speed in radians per second and
Torgue in Newton-meters.

The importx;,,, and expori,,, vectors are given by:

Va0 Oa0
0y O 0, O
Ximp:§/cﬁ Xop = IC%
EYAN 0), 0
U U
0] O'm0)
Parameters
Rg Stator Resistance (ohms)
Rg Rotor Resistance (reflected to Stator) (ohms)
Xis Stator Reactance (ohms)
Xir Rotor Reactance (reflected to Stator) (ohms)
Xu Mutual Reactance (ohms)
J Moment of Inertia (Kg-rf)
Whs Base Frequency (radians per second)
Py Pole Pairs
B Windage Torque Factor (Newton-Meters-second)
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States

0 Electrical Rotor Angle (radians)

Equations

First calculate the electrical angle:
e:%+jmqpt

Now specify the following stator voltage and current vectors:

Va—VoO a0
R oy
c_VoD c]

The Rotor voltages and currents as reflected on the stator are:

Var' O R

Oar' O
VR' = EjBR'ﬁ iR’ = EBR'ﬁ
CR,D CR,D

Calculate the inductances:

>

I-Is:isl I-Ir,:&I
s Whs
M = & I L= 2 M
Chs 3
The Stator induction matrix is given by:
1 1 0
§Lls + Lms) - E Lms - E Lms B
1 1
-0 _= = O
LS - O 2 Lms (Lls + Lms) 2 Lms O
0 0
1
O _}Lms __Lms (Lls+Lms)D
O 2 2 O

The Rotor induction matrix is given by:
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1 1
%Llr,-*_l-ms) _ELms _ELms B
[l
1 1
"= D _= ' _= [l
LR - O 2Lms (Llr + Lms) 2Lms O
O O
1 1
0 -=L -—=L L +L )U
|:| 2 ms 2 ms ( Ir ms)

The Mutual induction matrix is given by:

0 Moo, Mo+ TH,. mitodh-2H..0
ﬁ\/@: 2:;-[ j ms M(coq0))L, M H:o +2§nﬁ ..bé
EM tosh+ T, Mogh-Tl.  McosOlL %

The Rotor and Stator resistance matrices are given by:

0 oD 0 0 0g
R'= RREb R=RD 1 0
|D M 0 Ig

The system of equations which need to be solved can be expressed as:

(Vs ERs'*'S_lLS S_lLSR’ OdisO
0=0_,. , i D in
FE 5 le)” R'+SLygiRD

For a squirrel cage induction motgg' =0 . Hence the rotor curents can be solved

for:
iR = Agsls
As=-R'+S™L) (L&)
Aes=—(SR'+ L) " (Lg)"

Now the stator currents can be solved for:
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Ac=(R+SL+S LA
Is = AgVs
The neutral current is solved using KCL;
lg= 1, = 15— Ie

The electrical torque is given by:

2x|V|pP DD IBR ICR'E|
Te= 5 CMIIMO, - -0
3wy 0 (I HAR 20
M PRC W
'V'('B)'V'HBR —E—%%
law g [
M(IC)MHCR ————EIZIS|n(9)+

vg(M (IA)M (IBR' - ICR') +M (IB)M (|CR’ - IAR') +M (IC)M (IAR' - IBR')) COE(G)%

The full torque equation is given by:
T =-T.+(JS*+Bl)w,

Structural Jacobian

Z2Z2zZ22Z2 2
Z2Z2zZ22Z2 2
Z2Z2zZ22Z2 2
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Jacobian Calculations

The jacobian elements corresponding to the electrical variables are easy to
calculate. If we partition the jacobian matrix as follows:

OAs  AsgUY; Jew O
I -HJ A. UIAU, U JEWE
U Jie JreUy Jrw ]

where

0-10
U =g-15
0-10

The remaining matricesl{,, J.g, andJ ) are not as easy to calculate:

= Agis
Take the partial wrty,, :
_0As). 4 Ois
0= 0, |3+A$6com
Oig L 9(L'Ars) ARs)
au)m - 'JEW A$S ('Om

Le'Ars = L (SR +Lg) " (L)'

0(Ls'Ans LO(ls)" oLy
(a%AR)— L&K(SR'+Lg) (awm) (SR +Lg) " (L)'
. 2 . 21[]
B M(sin(B))L.Sp, M%mﬁa +§n@m§8pp M%ln _Enj ”bSppB
s _ H i . 0 2nn =
P gvl@sm 3 j wsSP, M (SIN(B))L s SP, M%m@ +3 j ”bSppé
El\/l%m 3 :J sSP, M%mﬁa ——ﬁ;mSSpp M (sin(8))LSp, B
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Appendix G: WAVESIM Program Files

WAVESIM consists of ten program source code| files plus three header f) files
and must be linked to the standard math library. Six of the program source code files and
two of the header files are specific to WAVESIM while the remaining files contain
application independent code.

WAVESIM SPECIFIC FILES

wavesi m c Main Executive Routine
wavesi m h Definition of WAVESIM Structures
waveinit.c Initialization of Structures

Readdevi ce. def

waveinit.h Define Initial values of all system parameters
waver ead. c Read and interpret Input File

wavebl d. c Build System

wavewrit.c Write MATLAB .M file

wavewt a. c Write MATLAB .M file (continued)

APPLICATION INDEPENDENT FILES

ioliba.c String Manipulation Routines
iolbia.h declarations of ol i ba. c routines
get _file.c Prompt for and open files
getline.c Obtain string from an input stream
fil ebase.c File name manipulation routines
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G-1 Main Program File: wavesi m c

wavesi m ¢ contains thamai n routine which performs the executive functions for
WAVESIM:

1.

2
3
4.
5
6
7

Initialize device definitions init_devices
Print the Header

Open Files

Read Input File read file
Build the System buil d_system
Write The Output File wite file
Close the Files
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G-2 System I nitialization: wavei nit. c
wavei ni t . c contains the following routines for initializing the system:

i nit_devices Sets Default Values
Callsr ead_devi ce_def toreadin
devi ce. def file.
Debug handler.

read_devi ce_def Reads irdevi ce. def file

print_system base Prints system base parameters

print _devi ce_def Prints a Device Definition

print_matrix Prints a Matrix

print_structural _jacobian Prints a Structural Jacobian

read_t erm nal Interprets TERM NAL subordinate
command

read_par aneter Interprets PARAMETER subordinate
command

read_state Interprets  STATE subordinate
command

read_function Interprets FUNCTI ON subordinate
command

read_structural jacobian Interprets STRUCTURAL
JACOBI AN subordinate command

strip_white Strips all blanks, tabs, returns from a
string.

read matrix Reads a matrix.
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The hierarchy for the routines imavei ni t . c is given by:

i nit_devices
read_devi ce_def
read_term na
read_paraneter
read matrix
read _state
read function
read_structural _jacobian
strip_white
print_system base
print_devi ce_def
print_matrix
print_structural _jacobian
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G-3 Reading Input File: waver ead. ¢

waver ead. ¢ contains the following routines for reading in an input file:

read file

read fil e _device

read file default

read_file_node

read file_tine

read fil e _debug

print _debug
print_tinme
print_device
print_system
print_node

finish reading file
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Controls other routines for reading
input files
Debug handler.

Reads and Interprets devi ce
command from input file.

Reads and Interpretsdef aul t
command from input file.

Reads and Interpretsode command
from input file.

Reads and Interpretsi ne command
from input file.

Reads and Interprets debug
command from input file.

Print debug flag status.

Print simulation time parameters.
Print device characteristics.

Print system characteristics.
Print node characteristics.
Generate  cross

generally finish the process of
developing the initial system.

references and



The hierarchy for the routines imaver ead. c is given by:

read file

read_fil e_device

print_device
print_matrix

read matrix

read _file_default
print_system base

read_file_node
print_node

read file_tine
print_tinme

read fil e _debug
print_debug

finish reading file

print_system
print_device
print_node
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G-4 Building the System: wavebl d. ¢

wavebl d. ¢ contains the following routines for building the system:

buil d_system

buil d_system.identify

bui | d_syst em xr ef

bui |l d_system structural jacobian

bui |l d_system bl ocks

find_bl ock

print_system.identify

sj _add

Sj _sub

print_system bl ock_sj ac

print_bl ock
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Identifies System variables and
equations

Builds cross references

Builds System Structural Jacobian
Reduces system

Identifies system variables and
equations.

Builds cross references within the
system.

Builds the
jacobian matrix.

system  structural

Identifies the sequence of blocks for
solving system.

Attempts to find a block of a given
size.

Prints system information.

Adds two Structural Jacobian

codes.

Subtracts two Structural Jacobian
codes.

Prints the block owner of each
element in the system sructural
jacobian matrix.

Prints information about a block.



The hierarchy for the routines imavebl d. c is given by:

buil d_system
buil d_system.identify
print_system.identify
bui | d_syst em xr ef
bui |l d_system structural jacobian
sj _add
Sj _sub
print_structural _jacobian
bui | d_syst em bl ocks
find_bl ock
print_bl ock
print_structural _jacobian
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G-5Writing MATLAB M-File: wavew i t. c and wavew ta. c

wavewrit.c and wavew t a. ¢ contain the following routines for writing the

output MATLAB M-File:

wite file

wite file_header

wite file_initialize

wite file_tinme_loop

wite file_plot_variables

wite file_footer

wite file_solve_block

Calls other routines to generate
MATLAB M-File.

Prints header information to
MATLAB M-File.

Prints System Initialization
parameters to MATLAB M-File.

Prints Time Loop algorithm to
MATLAB M-File.

Prints algorithm to plot system
variables to MATLAB M-File

Prints Footer information to
MATLAB M-File.

Prints algorithm for solving block to
MATLAB M-File.

The hierarchy for the routines imavewr i t . ¢c andwavew t a. c is given by:

wite file
wite file_header

wite file_intialize
wite file_tinme_loop

wite file_solve_block

wite file_footer
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G-6 Application Independent Files

Several Support files containing special C functions are required by WAVESIM.
These files were written by the author independently of WAVESIM and may contain
routines unused by WAVESIM.

G-6.1ioliba.c

i ol i ba. c contains a number of functions for manipulating strings. The functions
used by WAVESIM are:

St oda Converts a string to an array of double precision floating
numbers.

strextract Extracts thenth word of a string

strsplit Returns the remainder of a string after tite word.

strstrip Strips a string of leading and trailing spaces, tabs, and

carriage returns

strncnpa Case insensitive version ot rncnp for comparing the
first n characters of two strings.

strcnpa Case insensitive version aftrcnp for comparing two
strings.
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G-6.2getline.c

get | i ne. c contains functions for reading in lines from a file and automatically
implementing the following features:

1.

2
3.
4

5.

Comment Lines beginning with, ! , or %are ignored.
Blank Lines are ignored.
Lines can be continued with . or\ .

If the first word of the line id NCLUDE followed by a filename, lines are read
from that file. (NOTE: A check for recursivé NCLUDE statements is
performed to prevent infinite loops)

Carriage Returns are truncated.

The functions used by WAVESIM are:

init_strm Initialization function

get _|ine Function used to read the lines in.
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G-6.3get_file.c

get _fil e. c contains functions for opening input and output files. The following
features are implemented:

1.

Two strings are passed:dafault flename string and aargument filename
string. Either or both strings may be empty.

If the argument filename is specified, the functions attempt to open that file.
If opening that file is unsuccessful, the user is prompted to enter a new
filename.

If the argument filename is empty, the user is prompted to enter a filename. If

the default filename is not empty, it is offered to the user as the default name
of the file. If opening the file entered by the user is unsuccessful, the user is
prompted to enter a new filename.

Users can exit the routine without opening a file by entering ontyvehen
prompted for a filename

Users can obtain a directory listing by entering followed by whatever file
specification the user desires.

Leading and trailing spaces in filenames are truncated.

Whatever filename is successfully opened is passed back as alefiawt
filename.

The function used by WAVESIM is:

get _input _file Function for opening an Input File

G-6.4fil ebase.c

fil ebase. c contains functions for stripping an extension off of a filename and for
returning the extension of a filename. The following features are implemented:

1.

An extension is defined as all the characters after the last pejitmli(d after
the last directory delimitel for IBM-DOS and/ for UNIX). If no such period
is found, the extension does not exist.

The function used by WAVESIM is:

extract _base Extract the base filename (without extension)
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G-7 Makefile

The UNIX make utility greatly eases the task of developing programs by only compiling
those files which have changed since the last compilation. Here igkkef i | e used to
generate WAVESIM on a VAXstation 3100:

# Makefile for wavesim

#

# For Revision 2.0

#

FILES = wavesimc ioliba.c getline.c get file.c fil ebase.c \
wavei nit.c waveread.c wavewit.c wavewta.c \
wavebl d. c

oBJ = wavesimo ioliba.o getline.o get file.o fil ebase.o \
wavei nit.o waveread.o wavewit.o wavewta.o \
wavebl d. o

HEADER= wavesimh ioliba.h

CFLAG = -g

COWILE = cc

#

#

#

wavesi m $( HEADER) $(OBJ)
$(COWPI LE) -0 wavesim $(CFLAG $(OBJ) -Im

wavesi m o: $( HEADER) wavesim c
$(COWPI LE) -c $(CFLAG wavesimc

ioliba.o: ioliba.h ioliba.c
$(COWPILE) -c $(CFLAG ioliba.c

getline.o: getline.c
$(COWPILE) -c $(CFLAG getline.c

get file.o: get file.c
$(COWPILE) -c $(CFLAG get_file.c

filebase.o: filebase.c
$(COWPILE) -c $(CFLAG filebase.c

wavei nit.o: $(HEADER) waveinit.h waveinit.c
$(COWPILE) -c $(CFLAG waveinit.c

waver ead. o: $(HEADER) waver ead. c
$(COWPI LE) -c $(CFLAG waveread.c

wavew i t.o: $(HEADER) wavewit.c
$(COWPILE) -c $(CFLAG wavewrit.c

wavew t a. o: $(HEADER) wavew ta.c
$(COWPI LE) -c $(CFLAG wavewta.c

wavebl d. o: $(HEADER) wavebl d. c
$(COWPI LE) -c $(CFLAG wavebld.c

T HHH

nt:
lint $(FILES)
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