Modularity and Adaptability in Future U.S. Navy Ship Designs

Dr. Norbert Doerry
Dr. Philip Koenig
MECON 2017
November 21-23, 2017
Hamburg, Germany
Since World War II, the Navy has not been successful in keeping surface combatants operationally relevant for their design service life.

Modularity and Flexibility technologies that can help keep ships operationally relevant have been well known since mid 70’s, but have not been systematically adopted.

Current requirements and decision processes do not inherently consider the value of modularity and flexibility in keeping ships operationally relevant.

Can REAL OPTIONS THEORY help?
Open-Loop vs Closed-Loop Systems

• Current Acquisition System acts like an open-loop system
 – Command = Requirements
 – Must get the requirements (aim point) nearly perfect for good outcome (but the target is moving fast and changing directions)

• Flexible-Adaptable Acquisition allows in-service course correction
 – “Control authority” becomes a more important attribute
 – System is corrected in-service to respond to changing needs.
 • Aim point is automatically corrected by feedback to hit the target
 – Real Options Analysis provides guidance for designing the “Controller” and the “System”
Modular, Adaptable, Flexible Ship Technologies

Service Life Allowances
Planned Access Routes
Standard Interfaces

Mission Packages

Weapons Modules

Flexible Infrastructure (FI)
- Open Structure
- Open Power
- Open Outfitting
- Flexible Infrastructure (FI)
- Open HVAC
- Open Lighting
- Open Data Cable

Mission Bay

Off-Board Vehicles

Modular Hull Ship

Aperture Stations

11/22/2017

Approved for Public Release
Distribution is Unlimited
Need to rapidly evolve a ship over its service life to reflect evolving needs

Science & Technology
Research & Development
Configuration Design
Budgeting
Program Management

Flexible Features
Modularity
Service Life Allowances
to enable adaptability

Capability Needed

Modernization Process

Flexible Adaptable Ship

Intelligence – Adversary Capabilities
Force Architecture analysis
Changing Concepts of Operation (CONOPS)

Distribution is Unlimited
Real Options Analysis

• An “Option” is the right to buy or sell an asset for a given price on or before a given date.
 – Options must be purchased
 – Options have an expiration date
 – Options enable deferring a decision

• Real Options Analysis
 – Provides insight on the value of an option to determine if purchasing it is advantageous
 – Can be better than traditional Net Present Value analysis
 • Recognizes that not all pertinent information is available at time of purchase
 • Accounts for volatility and unknowns
 • Recognizes that managers can make better decisions when pertinent information becomes known.
Options “ON” versus Options “IN”

• Options “on” are reactive
 – Can always modernize even if modularity and flexibility features not incorporated.
 – Includes option to “abandon” which results in ships not meeting expected service life.

• Options “in” are proactive
 – Features paid for up front to enable managers to make affordable decisions in the future as uncertainty resolves.

Real Options Analysis helps determine the type and quantity of Options “in” that should be incorporated in a ship design.
Prerequisites for successful use of Real Options

• A financial model must exist

• Uncertainties must
 – exist
 – affect decisions when leadership is actively managing the project
 – affect the results of the financial model

• Management must
 – have strategic flexibility or options make mid-course corrections when actively managing the projects
 – be smart enough and credible enough to execute the options when it becomes optimal to do so

Affordability

- Affordability is the willingness to spend budget authority on a system.
- Depends on
 - Relative value with respect to other investments
 - Geopolitical Threat
 - Fiscal Environment
 - Industrial Base

Defense Spending as a Share of the Economy (GDP)

Defense Spending as a Share of Total Federal Spending

https://www.defense.gov/News/Special-Reports/FY16-Budget/
Proposed Process

Uncertainty Space Development Tool

Uncertainty Space

Design Vector
Alternative 1

Design Vector
Alternative 2

Design Vector
Alternative 3

Configuration Vector Development Tool

Configuration Vector Alternative 1

Configuration Vector Alternative 2

Configuration Vector Alternative 3

Configuration Operational Relevance Evaluation Tool

Year 20
Superior
Acceptable
Not Acceptable

- Cons trained
- Not Acceptable
- Uncons trained
Uncertainty Space

- Defines the environment in which the configuration vector evolves
 - World conflict state
 - Establishes Affordability constraints
 - Establishes severity of capability gaps
 - Potential adversary capabilities
 - Availability of key technologies
- Evaluated periodically
 - Typically Annually
- May be modeled as a Markov Chain
 - The values for this year depend stochastically only on the values for the prior year.

<table>
<thead>
<tr>
<th>UNCERTAINTY SPACE</th>
<th>World Conflict State</th>
<th>Peace</th>
<th>Adversary 1 ASW level</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adversary 1 conflict</td>
<td>No</td>
<td></td>
<td>Adversary 1 AAW level</td>
<td>7</td>
</tr>
<tr>
<td>Adversary 2 conflict</td>
<td>No</td>
<td></td>
<td>Adversary 1 SW level</td>
<td>7</td>
</tr>
<tr>
<td>Adversary 3 conflict</td>
<td>No</td>
<td></td>
<td>Adversary 2 ASW level</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Adversary 2 AAW level</td>
<td>5</td>
</tr>
<tr>
<td>Key Technology 1 available</td>
<td>No</td>
<td></td>
<td>Adversary 2 SW level</td>
<td>3</td>
</tr>
<tr>
<td>Key Technology 2 available</td>
<td>No</td>
<td></td>
<td>Adversary 3 ASW level</td>
<td>2</td>
</tr>
<tr>
<td>Key Technology 3 available</td>
<td>No</td>
<td></td>
<td>Adversary 3 AAW level</td>
<td>5</td>
</tr>
<tr>
<td>Key Technology 4 available</td>
<td>No</td>
<td></td>
<td>Adversary 3 SW level</td>
<td>5</td>
</tr>
</tbody>
</table>
Markov Chains

\[P = \begin{bmatrix} 0.7 & 0.5 & 0.3 \\ 0.2 & 0.3 & 0.3 \\ 0.1 & 0.2 & 0.4 \end{bmatrix} \]

\[x_{n+1} = Px_n \]

\[P = \begin{bmatrix} 0.88 & 0 & 0.09 & 0.06 \\ 0.09 & 0.82 & 0.09 & 0.06 \\ 0 & 0.12 & 0.79 & 0.13 \\ 0.03 & 0.06 & 0.03 & 0.75 \end{bmatrix} \]

<table>
<thead>
<tr>
<th>Year</th>
<th>Chain A</th>
<th>Chain B</th>
<th>Chain C</th>
<th>Chain D</th>
<th>Chain E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2030</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2031</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2032</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2033</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2034</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2035</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2036</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2037</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2038</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2039</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2040</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

1 = Peace
2 = Preparing for Conflict
3 = Regional Conflict
4 = Major War

\[1 = \text{Peace} \]
\[2 = \text{Preparing for Conflict} \]
\[3 = \text{Regional Conflict} \]
\[4 = \text{Major War} \]
Design Vector

- Consists of
 - Initial Ship Configuration at delivery
 - Initial set of tactics
 - Modernization process
- The Design Vector is the starting point for the Configuration Vector
- A study would normally compare multiple Design Vector alternatives
 - Evaluate the associated configuration vectors within multiple Uncertainty Spaces to determine performance
 - Statistics of the multiple configuration vectors are used to compare Design Vector alternatives.

DESIGN VECTOR

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular Hull Ship</td>
<td>NO</td>
<td>64 cell VLS WM A</td>
</tr>
<tr>
<td>Mission Bay</td>
<td>NO</td>
<td>32 cell VLS WM B</td>
</tr>
<tr>
<td>Container Stack</td>
<td>NO</td>
<td>5 inch gun WM A</td>
</tr>
<tr>
<td>Weapon Modules A</td>
<td>2</td>
<td>37 mm gun WM C</td>
</tr>
<tr>
<td>Weapon Modules B</td>
<td>1</td>
<td>37 mm gun WM C</td>
</tr>
<tr>
<td>Weapon Modules C</td>
<td>4</td>
<td>SEA-RAM WM C</td>
</tr>
<tr>
<td>Aperture Station A</td>
<td>3</td>
<td>CIWS WM C</td>
</tr>
<tr>
<td>Aperture Station B</td>
<td>2</td>
<td>ATT SWAP-C</td>
</tr>
<tr>
<td>Boats</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Aircraft</td>
<td>2</td>
<td>SPS-64 AS B</td>
</tr>
<tr>
<td>EME</td>
<td>YES</td>
<td>SPS-67 AS B</td>
</tr>
<tr>
<td>Flexible Infrastructure</td>
<td>YES</td>
<td>SPY-1D AS A x 3</td>
</tr>
<tr>
<td>Removal routes</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Electrical SLA</td>
<td>1 MW</td>
<td>Tactics standard</td>
</tr>
<tr>
<td>Cooling SLA</td>
<td>280 tons</td>
<td></td>
</tr>
<tr>
<td>Weight SLA</td>
<td>800 mt</td>
<td>3 month modernization</td>
</tr>
<tr>
<td>KG SLA</td>
<td>.5 meters</td>
<td>9 month modernization</td>
</tr>
</tbody>
</table>

- 3 month modernization availability
- 9 month modernization availability
- 6 years
- 3 months
- 6 months
- 9 months
- 3 year modernization
- 6 year modernization
Configuration Vector

- Describes the evolution of the design vector over time
 - Evolves in response to the Uncertainty Space
 - Different Uncertainty Space trajectories result in different configuration vectors
- Evaluated over time to assess operational relevance
 - Superior: Capability is much greater than needed
 - Acceptable: Capability is sufficient to perform mission
 - Not Acceptable Constrained: Capability is not sufficient to perform mission, but would be if sufficient resources or time provided
 - Not Acceptable Unconstrained: Capability is not sufficient to perform mission, but technology does not exist to achieve capability
Results

- Configuration vectors for each alternative design vectors developed and evaluated for a set of uncertainty space vectors.
- For each year, the fraction of configuration vectors in each category is displayed.
 - Design Vector alternatives with high percentages of Superior and Acceptable performance are desirable.
 - Design Vector alternatives with high percentage of Not Acceptable performance are at risk of being retired prior to the design service life.

![Year 5](chart)

![Year 20](chart)
Summary

• Cannot evaluate the value of modularity, flexibility, and adaptability by only examining the ship design.
• Must also consider
 – How gaps are identified.
 – How technology is developed.
 – How ship configurations are adapted to close the gap.
 – How resource constraints impact the response to a gap.
• Real Options Analyses conducted using the proposed framework promises to provide the fleet with more capability when that capability is most needed.
• Compare design alternatives by comparing statistics of configuration vector capability gaps evaluated over many uncertainty spaces.