MVDC Grounding and Common Mode Current Control

Dr. Norbert H. Doerry
Dr. John V. Amy Jr.
IEEE Electric Ship Technologies Symposium (ESTS 2017)
Arlington, VA
August 15-17, 2017
MVDC Reference Architecture
Introduction to Common Mode

- Common mode currents are also called leakage current: the return path of common mode currents is typically through the ship’s hull.
- Common mode currents flow through the hull due to a.c. voltages of a power systems neutral with respect to the hull potential interacting with parasitic capacitances.
 - The neutral voltage with respect to ground is the instantaneous average of all the power system conductor voltages with respect to ground.
- The difference in power system neutral voltages between the input and the output of a power electronics based converter is the dominant source of common mode current.
- Common mode impedances are a function of frequency.
- Common mode currents can result in safety hazards and corrosion.
- Common mode currents can be a source of Electromagnetic Interference (EMI)
- Common mode currents are impacted by the grounding method.
Simplified Model

- Common Mode model derived from 3 phase model
- Eliminates components that only impact normal “Differential Mode”
- Combines paralleled components.
- Based on method described by Brovont and Pekarek presented at ESTS 2015
Metrics of Interest

- **Magnitude of common mode impedance** seen by a common mode source as a function of frequency
 - Indicator of common mode currents local to equipment
- **Magnitude of common mode “transadmittance”** as a function of frequency
 - Ratio of common mode current in the distribution feeder (d.c. bus) to the common mode voltage
 - Measures how well common mode current is contained to the vicinity of the equipment.
- **Design Objectives:**
 - Prefer to have common mode currents depend on design variables and not hard to predict parasitic values
 - Minimizing transadmittance at frequencies of interest is of higher priority than maximizing common mode impedance
 - Need to keep common mode impedance high enough to limit common mode current local to the equipment.
A.C. Side Hard Grounding

Impedance: common mode voltage associated with Rectifier Power Electronics divided by the common mode current through the Rectifier Power Electronics.

Transadmittance: common mode current through the DC bus divided by the common mode voltage associated with Rectifier Power Electronics.

Approved for Public Release
Distribution is unlimited
A.C. Side High Resistance Grounding

[Diagrams and graphs related to high resistance grounding systems are shown.]
D.C. Side shunt capacitors

![Diagram of D.C. Side shunt capacitors](image)

Impedance Magnitude

![Impedance Magnitude Graph](image)

RDC Transadmittance Mag

![RDC Transadmittance Mag Graph](image)

7/14/2017

Approved for Public Release

Distribution is unlimited
D.C. Side Choke

\[L \approx M \]

\[i_{1cm} = i_{2cm} \]

\[i_{1dm} = -i_{2dm} \]

\[v_1 = L \frac{di_1}{dt} + M \frac{di_2}{dt} \]

\[v_2 = L \frac{di_2}{dt} + M \frac{di_1}{dt} \]
Choke and Shunt Capacitors
Choke, Shunt Capacitors, and Damping Resistor

Impedance Magnitude

RDC Transadmittance Mag
Choke, Shunt Capacitors, and Balancing Resistors

![Diagram of electrical circuit with labels and annotations]

Impedance Magnitude

RDC Transadmittance Mag

7/14/2017

Approved for Public Release

Distribution is unlimited
Impact of Line to Ground Fault on Common Mode Current
Reduce Common Mode Voltage

• Provide Symmetry
• Design power electronic gating algorithms to minimize common mode voltages
• Design rotating machines and associated power electronics synergistically to minimize common mode voltages
 – Consider two 3-phase systems 180 electrical degrees apart
 – Independently drive windings
Summary

• Control of Common Mode Currents must be accomplished both at the total system level and at the module level.
• Need to develop common mode models
• Common mode impedance and transadmittance are good metrics to help characterize common mode performance
• Need to consider impact of ground faults
• Need to consider methods of reducing common mode voltages