MVDC Specs and Standards Design Tools

Advanced Naval Power and Energy Systems ASNE DAY 2016 Dr. Norbert Doerry March 2, 2016

Setting the Scene

"In FY2030, the DON plans to start building an affordable followon, multi-mission, mid-sized future surface combatant to replace the Flight IIA DDG 51s that will begin reaching their ESLs [Estimated Service Life] in FY2040."

Report to Congress on the Annual Long-Range Plan for Construction of Naval Vessels for FY2015

Big differences from DDG 51:

- High-energy weapons and sensors
- Flexibility for affordable capability updates

Photo by CAPT Robert Lang, USN (Ret), from site http://www.public.navy.mil/surfor/swmag/Pages/2014-SNA-Photo-Contest-Winners.aspx

Why Medium Voltage DC?

- Decouple prime mover speed from power quality
 - Minimize energy storage
- Power conversion can operate at high frequency Improve power density
- Potentially less aggregate power electronics
 - Share rectification stages
- Cable ampacity does not depend on power factor or skin effect
- Power Electronics can control fault currents
 - Use disconnects instead of circuit breakers
- Acoustic Signature improvements
- Easier and faster paralleling of generators
 - May reduce energy storage requirements
- Ability to use high speed power turbines on gas turbines

Affordably meet electrical power demands of future destroyer

An AC Integrated Power System would likely require future destroyer to displace greater than 10,000 mt

Notional MVDC Architecture

Approved for Public Release Distribution is unlimited

Institutionalizing Technology

Technology Maturation & Product Development

TRL		1	1	1	
1-3	Basic and Applied Research	Spec Concept	Design/build/ test to understand technology	Small concept demo	echnology
4-5	Advanced Technology Development	Develop Draft Spec or Standard	Design/build/ test to mitigate high risks	ADM	ience & Te
5-7	Transition & Product Line Development	Validate Draft Spec or Standard	Design/build/ test to mitigate known risks	EDM Product Line	Sc
8-9	Production	Implement Spec or Standard (revise with lessons learned)	Tactical hardware Design/build/ test	Deployed hardware	

Product Development

System Development

Electric Plant Analysis: Design Tools

Concept Exploration

Preliminary and Contract Design

- Electric Power Load Analysis
- Load Flow Analysis
- Transient Analysis
- Fault Current Analysis and Protective Device Coordination Study
- Harmonic and Non-Fundamental Frequency Analysis
- Stability Analysis
- Electromagnetic interference (EMI) analysis
- Reliability Analysis
- QOS Analysis
- Vulnerability and Recoverability Analysis
- Arc Flash Analysis

Design Tools Roadmap currently under development

Design Tools: Progressive Definition

-Gross level definition of system characteristics based on ship size or similar designs.

Parametric

-3D system layout and routing

The amount of data and detail increases as engineers work with smaller areas of the ship.

Schematic

-Assembly drawings

-Work packages

topology

-System network layout and

Diagrammatic

Distribution is unlimited

-Schematic level information laid out in 3D ship space

Distributive systems provide the utilities and infrastructure for the individual subsystems and equipment.

Space Reservation

Assembly, Builders Definition, Clearance

Full Component Breakdown, Maintenance

Approved for Public Release Procedures

Conclusion

- MVDC promises to enable affordable ship designs that can support high power weapons and sensors
- We need to get Institutionalization of MVDC right!
 - Technology Development
 - Specifications, Standards, Design Practices & Criteria
 - Design Tools and Associated Data
 - Trained and educated workforce