DC Voltage Interface Standards for Naval Applications

Dr. Norbert Doerry and Dr. John Amy
Naval Sea Systems Command

IEEE Electric Ship Technologies Symposium
Alexandria, VA
June 22-24. 2015
Considerations in establishing standard DC interfaces

- Existing commercial and military interface standards should be used to the maximum extent practical.
- Different standard voltage levels should differ significantly. (greater than 25%)
- Higher voltages enable lower currents, and lighter cables.
- Standard voltage ratings of available semiconductor devices and insulation ratings should be considered.
interface terms

- Nominal System Voltage
- Steady State Voltage Tolerance
- Steady State Voltage Range
- Voltage Transient Excursion
- Source
- Load Normal
- Load Abnormal
Proposed Low Voltage DC Standards

• Ship Service Loads
 – 155 V (MIL-STD-1399 section 390)
 – 375 V (Based on DDG 1000 and ETSI EN 300 132-1)
 – 650 V (Based on DDG 1000)

• Special Loads (equipment designed for aircraft and vehicles)
 – 28 V (MIL-STD-704)
 – 270 V (MIL-STD-704)
Proposed High Voltage DC Standards

• Intra-zone power distribution and load utilization
 – 1 kV

• Inter-zone power distribution and high power load utilization (inspired by IEEE 1709)
 – 6 kV
 – 12 kV
 – 18 kV
Proposed Pulse Load Requirements

• For pulse loads, the duty cycle, ramp rates, and peak currents must be negotiated in operation through a control interface between the load and the power management system.

• The load may not violate the non-pulse load requirements without first gaining concurrence from the power management system.

• Synchronization of the pulse application by the load and power system dynamics may be required via the control interface.
Proposed Compliance Testing

• **Load Characterization Measurements**
 – Line to Ground Capacitance
 – DC Resistance to Ground
 – Current Ripple
 – Load Current Rate of Change (non-pulse)
 – In-Rush / Initialization Current (non-pulse)
 – Peak In-rush Current Rate of Change (non-pulse)
 – Load Impedance

• **Susceptibility Tests**
 – Voltage Tolerance
 – Voltage Transient
 – Voltage Ripple
 – Voltage Spike
 – Voltage Offset Tests (terminal to ground)
 – Abnormal Service Steady Stage Voltage

• **Pulse Load Tests (if applicable)**
 – Control Interface Operability
 – Power Ramp Rate
 – Maximum Current
 – Pulse Width
 – Pulse Recovery Time
What’s next?

• Conduct additional research in Maximum Load Line-to-Ground Capacitance
• Perform additional development of pulse load requirements
• Incorporate feedback from industry and academia
• Develop new section(s) of MIL-STD-1399