

Flexible Adaptable Electric Warship

Electric Ship Technology Symposium April 22-24, 2013 Arlington, VA

Dr. Norbert Doerry

Naval Sea Systems Command, U.S. Navy Norbert.doerry@navy.mil

Approved for Public Release

- The Fleet Today
- Opportunities
- Observations
- Modularity and Flexibility Modular Adaptable Ship

Status of the U.S. Navy

- Navy Personnel
 - Active Duty: 317,464
 - 52,450 Officers
 - 260,581 Enlisted
 - 4,433 Midshipmen
 - Ready Reserve: 109,596 [Feb 2013]
 - 4,241 currently mobilized [Mar 2013]

283 Ships and Submarines

- Deployed:
- 94 (33% of total)
- Underway for Local Ops / Training: 30 (10% of total)
- 3700+ Aircraft

Battle Force Composition

10 Aircraft Carriers

- **14 Ballistic Missile Submarines**
 - 4 Guided Missile Submarines
- **54 Attack Submarines**
- **100 Surface Combatants**
- **34 Combat Logistics Ships**
- **30 Amphibious Warfare Ships**
- 32 Support / Mine Warfare Ships
- 5 Naval Reserve Force, Active (NRFA) Ships

Apr 2013

4

- Forward Presence
- Deterrence
- Sea Control
- Power Projection
- Maritime Security
- Humanitarian Assistance and Disaster Response

Focus on Littorals and Anti-Access / Area-Denial (A2/AD)

Evolving and very different threats / environments

Challenges of Warship Acquisition

Very low quantities, high unit cost, long lives No prototypes, first ship(s) must be fully operational Combat / weapons systems developed concurrently Government assumes responsibility for meeting requirements Extremely high parts count (in the order of 10 million) Minimal commercial shipbuilding industrial base Intense Congressional/OSD oversight

Forward-Fit

1.44	one		2-84				-	0.44		o mg			8.	1.444															_	
Fiscal Yea	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
Aircraft Carrier	1					1			1		1					1					1					1				
Large Surface Combatant	2	1	2	2	2	2	2	2	2	2	3	2	3	2	3	2	3	2	2	2	2	2	2	3	3	3	3	3	3	3
Small Surface Combatant	4	4	4	2	2	3	3	3	3	3	3	3	3	3				1		1		1	1	2	3	4	4	4	4	2
Attack Submarines	2	1	2	2	2	2	2	3	2	3	2	1	2	1	1	1	1	1	1	1	1	1	1	1	1	2	1	2	1	2
Balistic Missile Submarines	-								1			1		1	1	1	1	1	1	1	1	1	1							
Amphibious Warfare Ships					1	1		1		1		2	1	1		2	1	1	1	2		8	1	1				2		1
Contrat Logistics Force				1		1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1								
Support Vessels	1	1		2		1	1	2		2	3	2	1			1	1	2	2	3	2	2								
Total New Construction Plan	10	7	8	0	1	11	8	12	9	12	13	12	10	8	6	8	8	9	8	11	8	8	5	7	7	10	B	11	8	8

Table ES-1. FY2013-2042 Long-Range Naval Vessel Construction Plan

Back-Fit

Table ES-2. FY2013-2042 Naval Battle Force Inventory

Fiscal Year	13	14	15	16	17	18	19	20	21	22	23	24	25	28	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
Aircraft Carrier	10	10	11	11	11	11	11	11	11	12	11	11	11	11	12	11	11	11	11	11	11	11	17	11	11	11	11	10	10	10
Large Surface Combatant	80	78	78	80	82	84	95	87	88	87	68	189	88	89	90	89	87	85	81	80	79	78	80	82	84	86	88	88	89	88
Small Surface Combatant	35	30	26	30	32	35	39	37	38	40	39	41	43	46	49	52	56	55	55	55	55	55	55	55	56	55	55	55	55	55
Attack Submerines	55	55	54	53	50	51	51	48	48	47	47	-46	45	45	44	43	43	43	45	45	46	47	48	49	50	48	49	49	48	49
Cruise Missile Submarines	4	4	4	4	4	4	4	4	4	4	4	4	4	2	1				- 23						8	0.0				
Ballistic Missile Submarines	14	14	14	14	14	14	14	14	14	14	14	14	14	14	13	12	11	11	11	10	10	10	10	10	10	10	10	10	11	12
Amphibious Warfare Ships	31	29	28	29	30	31	31	31	31	32	32	34	34	34	33	34	33	33	32	32	33	34	33	33	33	32	32	31	32	31
Combat Logistics Force	32	32	31	31	29	29	29	29	29	29	29	:29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29
Support Vessels	24	27	30	32	33	33	35	34	33	33	35	35	33	32	33	33	33	33	33	33	33	33	33	33	33	34	33	33	33	.35
Total Neval Force Inventory	285	279	276	264	285	292	300	296	200	298	300	303	301	302	304	303	302	300	297	295	296	297	299	302	305	305	307	306	307	307

Annual Report to Congress on Long-Range Plan for Construction of Naval Vessels for FY2013, April 2012

Ways to get a new product on a ship

- In Service
 - Ship Change Document (Planned configuration change)
 - Alteration Equivalent to Repair (AER)
 - Fit Form Function replacement of a repair part
 - Via Stock System
 - Alteration during Depot Maintenance
 - "Requirements" for consumables (Maintenance Requirements Cards, Technical Manuals, etc.)
- New Construction
 - Written into Ship Specifications
 - Engineering Change Proposal
 - Written into Component Specification / Standard

New Technology to the Fleet

Observations

- Surface Combatants & Amphibious Warfare Ships
 - Modularity and Flexibility
 - Variable electric load
 - Growth in radar loads
 - Future growth in electric weapons
 - Continued progression of electric drive / hybrid electric drive
- Auxiliaries
 - The standard practice for all but high speed vessels is now integrated diesel electric

AFFORDABILITY WILL CONTINUE TO BE A KEY DRIVER

Modular Adaptable Ship: Motivation

Koenig, Dr. Philip, Don Nalchajian, and John Hootman, "Ship Service Life and Naval Force Structure," ASNE ETS 2008, 23-25 Sept 2008

Our ships must remain militarily relevant (affordably) over their Expected Service Life for the Navy to achieve Force Level Requirements

Building an Affordable Future Fleet in an Evolving World

- Face uncertain times
 - The threat is evolving
 - Our technology is evolving
 - Lean times ahead
- Ships and their systems must be robust, flexible and adaptable
- Systems Engineering must anticipate uncertain and changing requirements

The Electrical Infrastructure must be robust, flexible, and adaptable

Optimized Point Design (many commercial ships & Navy Auxiliaries)	Robust Design (service life allowance Build in capability to meet threat over service life)	Design Fixed
(Little Incentive)	Modular Adaptable (Mission Modules Flexible Infrastructure etc. Morph ship to match threat Over service life)	Design Flexible
Requirements Fixed	Requirements Changing	Need to analyze "Requirements Risk"

A combination of strategies is likely optimal

Modular Adaptable Ship **Technology Examples**

- "Modular Hull Ship" (bow, stern, variable Parallel Mid-Body)
- "Mission Bay" (like LCS)
- Container Stacks/Slots/Interfaces
- Weapon/Electronics Modules / zones
- Aperture Station
- Aircraft, boats, UUV, UAV, USV
- Electronic Modular Enclosures (EME)

All impact electrical power system design

Flexible Infrastructure

Electronic Modular Enclosures Specialized shelter provides Length Width Height **Commercial Off The Shelf (COTS) Hardware** 18 ft 7 ft 7.45 f 16 shelters house 236 cabinets Smal Shock, Thermal, EMI, Security, & Noise Reduction Mediu 30 ft Power Distribution and Control Enables Integration of electron

Flexible Open Open HVAC Structure Infrastructure (FI) Schelde Naval Shipbuilding: Sigma Design Concept Open Open . Liahtina Power Open Open Data Outfitting Cable Apr 2013

- How should flexibility be valued?
- Incorporate how much of what type of flexibility?
 - Return on investment calculations are not easy
 - future requirements are uncertain
 - future investment is uncertain
 - future return on the investment is uncertain
 - Net Present Value analysis is not ideal
 - Alternatives generally not equal in performance.
 - Does not value delaying decisions until more information is known about requirements.

"Current valuations in naval ship design tend to focus on valuing a point designed product. Although there have been efforts to more completely explore the design space for the optimal solution, the optimal solution is based on a fixed set of requirements and preferences. In addition, optimization infers certainty. There is no way in the current system to value adding flexibility to the design, **since under certainty, flexibility has no value."**

Gregor, Jeffrey Allen. 2003. *Real options for naval ship design and acquisition: A method for valuing flexibility under uncertainty*. M.S. thesis, Ocean Engineering, MIT.

- The Navy is continuing on the path to the Electric Warship.
 - Its more than just Electric Drive
- There are plenty of opportunities to influence future ship designs as well as back-fits into the existing fleet.
- Affordability will continue to be a major driver.
- Our community should spend time and resources on understanding how to best design power systems for future "Modular Adaptable Ships."

