

Modular Adaptable Ship Design Implementation

ASNE Day 2013 February 21-22, 2013

Norbert Doerry

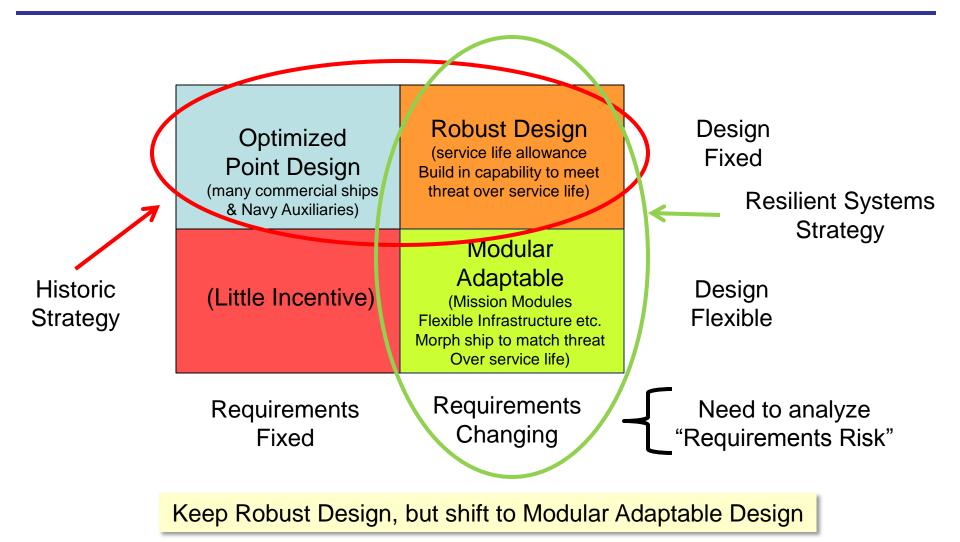
Technical Director, Technology Group (SEA 05TD) Naval Sea Systems Command Norbert.doerry@navy.mil

Feb 2013

Approved for Public Release Doerry

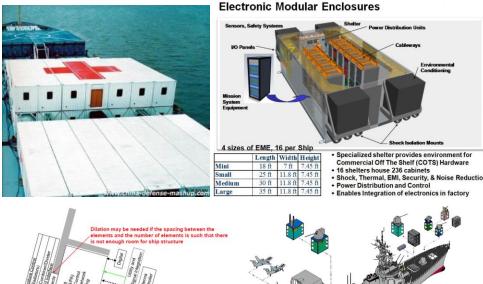
Building an Affordable Future Fleet in an Evolving World

- Face uncertain times
 - The threat is evolving
 - Our technology is evolving
 - Lean times ahead
- Ships and their systems must be robust, flexible and adaptable
- Systems Engineering must anticipate uncertain and changing requirements



Optimized Point Design (many commercial ships & Navy Auxiliaries)	Robust Design (service life allowance Build in capability to meet threat over service life)	Design Fixed
(Little Incentive)	Modular Adaptable (Mission Modules Flexible Infrastructure etc. Morph ship to match threat Over service life)	Design Flexible
Requirements Fixed	Requirements Changing	Need to analyze "Requirements Risk"

A combination of strategies is likely optimal


Modular Adaptable Ship Technology Examples

- "Modular Hull Ship" (bow, stern, variable Parallel Mid-Body)
- "Mission Bay" (like LCS)
- Container Stacks/Slots/Interfaces
- Weapon/Electronics Modules / zones
- Aperture Station
- Aircraft, boats, UUV, UAV, USV
- Electronic Modular Enclosures (EME)
- Flexible Infrastructure

Feb 2013

Open

HVAC

Open Liahtina

Open

Data

Cable

Flexible

Infrastructure (FI)

Approved for Public Release Doerry

Open

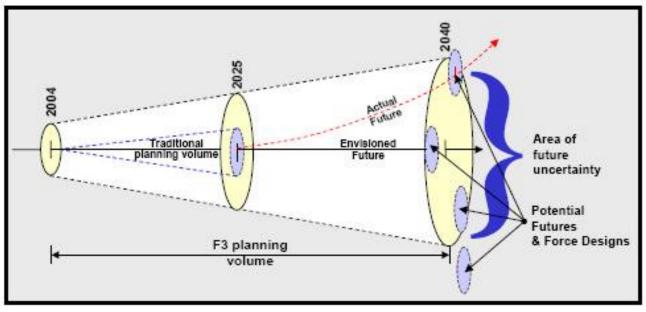
Structure

Open

Power

Open

Outfitting

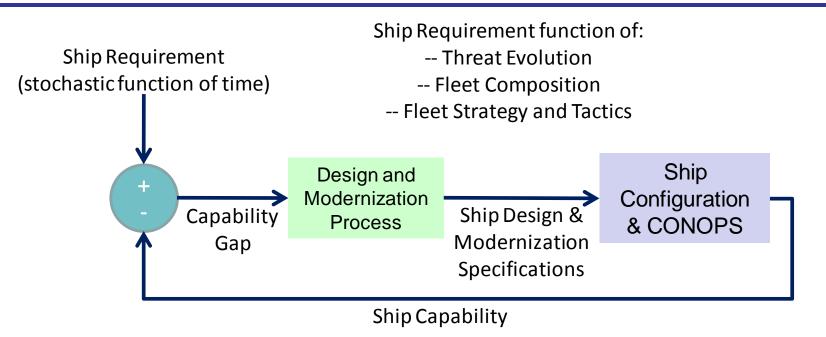


- How should flexibility be valued?
- Incorporate how much of what type of flexibility?
 - Return on investment calculations are not easy
 - future requirements are uncertain
 - future investment is uncertain
 - future return on the investment is uncertain
 - Net Present Value analysis is not ideal
 - Alternatives generally not equal in performance.
 - Does not value delaying decisions until more information is known about requirements.

"Current valuations in naval ship design tend to focus on valuing a point designed product. Although there have been efforts to more completely explore the design space for the optimal solution, the optimal solution is based on a fixed set of requirements and preferences. In addition, optimization infers certainty. There is no way in the current system to value adding flexibility to the design, **since under certainty, flexibility has no value.**"

Gregor, Jeffrey Allen. 2003. *Real options for naval ship design and acquisition: A method for valuing flexibility under uncertainty*. M.S. thesis, Ocean Engineering, MIT.

NAVE SEA SYSTEMS COMMAND



Rice, Theodore L. CAPT USN (RET), "Future Force Formulation Experiment," ASNE Day 2005, April 26-27, 2005.

- Accurately forecasting requirements over the typical 30-50 year lifespan of a warship is nearly impossible.
- Postulate "Alternate Futures" to model associated future force designs and potential needs for individual ships.
 - Enables bounding potential future requirements for individual ships
 - Helps forecast when future requirements will become apparent

Concurrently Designing the Ship, its Concept of Operations, and the Design and Modernization Process

- View the Ship Configuration, its Concept of Operations (CONOPS) and Design & Modernization Process as a dynamic system that spans the ship's total life.
- Design this dynamic system to minimize both the total ownership cost and the "Capability Gap."
- Understanding the variability of the Ship Requirements over time is crucial.

Real Options Theory

1. Naval ship design projects intrinsically create options having many (but not all) of the attributes of financial options.

There are valuation methods for financial options. Could they be modified for use in naval ship design? Or, for the general case of defense systems design and acquisition?

2. Naval ship design features have option value that is not currently documented.

Example - adaptability features: "Promoting flexibility... creates a quantifiable value, and this value exists whether or not one actually attempts to quantify it using an options pricing model."

3. If option value were explicitly recognized, design and program decisions would benefit from additional insight, and certain types of design features would be more highly valued.

Real options are like financial options in many ways But there are key differences		
Option on stock	Real option on engineering project	
Option price Listed on financial markets	Real option price Ex. – funding for early stage design exploration, funding for R&D, etc.	
Current value of stock Listed on financial markets	Present value of future cash flows Naval case: future defense utility (?)	
Striking (exercise) price Contractually specified	Investment cost for project Ex. – cost to commercialize a new tech, cost to do downstream design and construction	
Time to expiration Contractually specified	Time until opportunity disappears Ship design: economy, actions of competitors, etc. Naval ship design: economy, actions of future adversaries, etc.	

Dr. Phil Koenig, "Option Value in Naval Ship Design"

- Model alternate futures to bound future requirements.
 - Identify when sufficient information will be known to determine the most likely alternate future.
- Identify Modular Adaptable Ship technologies or Robust features that allow one to affordably defer investment decisions to when more is known about the future
- Concurrently design the ship, its Concept of Operations, and the ship design & modernization process to enable affordably addressing changing requirements over the ship's life cycle.
 - Consider using real options theory to guide investment decisions