

Machinery Control System – Load Controller Interface for "Smart Loads"

ASNE Automation & Controls Symposium August 10-11, 2010

Norbert Doerry

Technical Director, SEA 05 Technology Group SEA05TD Norbert.doerry@navy.mil 202-781-2520

Approved for Public Release

- The Load Equipment to Machinery Control System (MCS) interface is typically not specified and the associated Vendor Furnished Information (VFI) is not available until detail design and construction
 - Greatly complicates MCS integration
 - MCS functionality typically limited to what can be accomplished during the available design time.
- Lack of interface standards complicates in-service engineering support.

http://www.marinetalk.com

- Affordability of embedded controllers enables a distributed approach to many MCS Functions
 - Simplify system integration
- An Open Architecture (OA) standards based approach to MCS interfaces enables decoupling MCS design from selection of specific equipment.
 - Enables more MCS design to occur earlier, during Preliminary and Contract Design.
 - Include interface standards, functionality, and a defined architecture.
 - Enables re-use of common software elements across ship classes.
 - Enables incremental advances in MCS functionality.

http://www.draper.com

Greater Value, Innovative Solutions For the Warfighter

Prepared by: Naval Open Architecture Enterprise Team Distribution statement A: Approved for Public Release; distribution is unimite

Today's Baseline Architecture

From: "Enterprise Commonality: MCS Deep Dive IPT Review and Update 24 June 2010"

Approved for Public Release

—> MCS to end system information flow

- Load Controller
 - Embedded controller within a piece of equipment
- Network Interface
 - Hardware for connecting the Load Controller to the Network
 - May provide redundant connection to the network
- Network
 - Method(s) for routing information, data, and commands
 - Can include a device level network (Fieldbus)
- Supervisory Control
 - For each resource type and mission, a supervisory control provides total ship management
 - Includes the Mission Layer Control / Ship Domain Control
- Shipboard Simulation Manager
 - Provides ship-wide simulation services to the supervisory controllers.
 - Also can be used for onboard training
- Remote Monitoring
 - Provide operator the ability to monitor the condition and information on a given piece of equipment
 - Includes Alarm Management and Logging Managment
- Conditioned Based Maintenance Manager
 - Captures data from multiple equipments to determine the material condition of equipment and to predict future failures.

NAVAL SEA SYSTEMS COMMAND

- Each Network Interfaces may have a different set of Physical and Data Link layers
 - Copper Signal Cable
 - Fiber Optic Cable
 - Power Cable
 - Wireless
- Load Controller to System Controllers may require different Network and Host Layer protocols.

http://www.3mfuture.com/network_security/arp-guard-arp-spoofing.htm

VALVETEA VAVAL SEA SYSTEMS COMMAND Load Controller Functional Model

Doerry

10

- Load Hardware Controller
 - Executed low level control function for the equipment
 - Gets configuration data and set points from the Data and Configuration Manager
 - Provides operational modes, conditions, and sensor data to the Data and Configuration Manager
 - Gets Commands from the Control Server
 - Provides Commands and information needed for system control to the Control Server
- Data and Configuration Manager
 - Maintains the configuration data for the component
 - Manages all data and configuration information
- Internal Bus
 - Hardware and software for communicating among Load Controller Elements

These internal elements would likely not be specified

Load Controller Elements (cont)

- Control Server
 - Supports a fast, low latency, deterministic communications protocol to support system level control.
 - Communicates commands and information needed for control.
 - Directly communicates with the Local Hardware Controller and the Data and Configuration Manager
- Information Server
 - More generalized protocol for interfacing with Remote Monitoring and Condition Based Maintenance software
 - Can be used to establish configuration set points.

Load Controller Elements (cont)

- Web Server
 - Similar to the Information Server, but uses HTML / HTTPS to communicate with remote HSI's via a standard web browser
 - Types of pages
 - Equipment Status page
 - Equipment Configuration page
 - Parameter trend-line page
 - Diagnostics / Maintenance Page
 - Technical Manual Page
 - Training Manual Page
- Simulation Server
 - Communicates with the Shipboard simulation server
 - Used to support shipboard training environment
 - Also can be used for contingency planning and transition planning by supervisory controllers
 - Able to support multiple simulations simultaneously
- Local HSI
 - Provides local operator access to controller
 - Possibly just a browser for the Web Server?

June 2010

Approved for Public Release

Doerry

OSI Layer	Control Server	Information Server	Web Server	Simulation Server
Application	Many Available LONWORKS?	XML?	HTTPS/HTML	?
Presentation	ASCII?	ASCII	ASCII	?
Session	UDP/sockets?	TCP/sockets? UDP/sockets?	TCP/sockets	UDP/sockets?
Transport	UDP?	TCP	TCP	UDP?
Network	IP?	IP	IP	IP?
June 2010	Approved for Public Release Doerry			14

Standards Considerations

- Many standards exist for the Application Layer of the Control Server.
 - LONWORKS could be a model for the control server Application Layer.
- Using wireless or power cables for the Media Layers can reduce costs by eliminated dedicated signal cables.
 - ANSI/EIA 709.2-A-2000 Control Network Powerline (PL) Channel Specification
 - IEEE P1901 Draft Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications

LONWORKS Object Model

ANSI/EIA 709.1 Control Networking Standard

- Protocols for the Control Server
- XML Schema for the Information server (If using XML)
- Style Guide for HTML Server
 - Standardized Pages?
 - Standardized directory structure?
- Protocols for the Simulation Server
 - Should be aligned with High Level Architecture
- Style Guide for HSI
- Information Assurance
- Staying Aligned with Commonality Efforts
- How to Transition from today's system to the vision system?

- Develop a roadmap to describe the vision for future Machinery Control Systems and the steps to get there.
- Identify the needed specifications, standards, and handbooks needed to support the roadmap.
- Start working on the specifications, standards, and handbooks.
- Prototype implementations.

