

Transitioning Technology to Naval Ships

Transportation Research Board Public Meeting National Academy of Sciences June 10, 2010

Dr. Norbert Doerry

Technical Director, SEA 05 Technology Group SEA05TD Norbert.doerry@navy.mil 202-781-2520

Approved for Public Release

- Technology Transition
- NGIPS Technology Development Roadmap
- Metrics
- Technology Transition Examples
- Recommendations

"The practical application of knowledge especially in a particular area"

Merriam-Webster Dictionary

- "Transfer of knowledge from those people that create it, to those people that require the knowledge to impact a change on a ship."
 - People have to be paid
 - People generally are in different organizations
- Two aspects of Technology Transition
 - Transfer of Knowledge from one organization to another
 - Transfer of Fiscal Responsibility from one organization to another

Getting a new technology Component / System on a ship

- New Construction
 - Written into Ship Specifications
 - Engineering Change Proposal
 - Written into Component Specification
 / Standard
- In Service
 - Ship Change Document (Planned configuration change)
 - Alteration equivalent to Repair (AER)
 - Fit Form Function replacement of a repair part
 - Via Stock System
 - Alteration during Depot Maintenance
 - "requirements" for consumables (MRCs, TMs, etc.)

- Modify Process Documentation
 - Standards and Handbooks
 - Work Instructions and Standard Practices
 - Modify SOWs and specs
- Modify infrastructure
 - Tools
 - Software
 - Workspace layout
- Train Workforce
- Monitor and act on relevant metrics

Reasons to Adopt a new Technology

Gap (Best way to fulfill an unmet operational requirement)

- Advances in adversary capabilities
- Changes in CONOPS
- Changes in law and regulations
- Loss of industrial base to reproduce existing system
- Opportunity (Perceived benefits outweigh the risks)
 - Acquisition Cost Reduction
 - Total Ownership Cost Reduction
 - Enable new CONOPS

Risk Management

- Improve Flexibility to react to potential future gaps (Requirements Risks)
- Mitigate risk of disappearing Industrial Base or source of raw materials
- Mitigate risk of a technology for another more critical program

June 2010

NAVAL SEA SYSTEMS COMMAND

8

Science & Technology	Advanced Component Development & Prototypes	Acquisition	Operational System Development
BA-1 to	BA-4	BA-5,	BA-7,
BA-3		SCN, OPN	OPN

- Observations
 - Serial (long) Process
 - Does not promote commonality across platforms

Alternate Technology Transition Model

- Product Lines
 - Provide capability to create and produce specific applications when needed.
 - Promote Commonality across Ship classes.
 - Decouple S&T from specific ship applications
 - Eliminate churn in aligning S&T and ship acquisition programs.
 - Capture knowledge in Specifications, Standards, Handbooks, Design Data Sheets, Rules, etc.
- Technology Development Roadmaps facilitate communication

June 2010

Technology Transition Enablers

- Technology Transition Agreements
- Relationship Managers
- Metrics

GAO, "Stronger Practices Needed to Improve DOD Technology Transition Processes," GAO-06-883, September 2006

- "The agreements put in writing the technology and business-related expectations, such as specific cost, schedule, and performance characteristics that labs must demonstrate."
- "The agreements also may require documenting manufacturing costs or specifying whether certain lab scientists will be loaned to the product line to provide continuity in technical knowledge."

DEFINES A RELATIONSHIP BETWEEN TECHNOLOGY CREATION AND PRODUCT LINE DEVELOPMENT

SHOULD INCLUDE MUCH MORE THAN A COMMITMENT TO FUND FURTHER DEVELOPMENT

Relationship Managers

- Communicate across the labs and product lines to address transition issues.
- Ensure the right knowledge gets to the right person to make the final product a success.
- Facilitate feedback from the product development back to the technology developers to guide the creation of new technology.

- DOD Metrics
 - Technology Readiness
 Level
 - Manufacturing Readiness Levels
- Commercial Industry Metrics
 - More Inclusive of all aspects of Technology Transition

MRL	Definition	Phase	BA	
1	Basic Manufacturing Implications Identified	Pre Materiel Solution Analysis	1	
2	Manufacturing Concepts Identified	Pre Materiel Solution Analysis	2	
3	Manufacturing Proof of Concept Developed	Pre Materiel Solution Analysis	2-3	
4	Capability to produce the technology in a laboratory environment. Materiel Solution Analysis(MSA)leading to a Milestone A decision.		2-3	
5	Capability to produce prototype components in a production relevant environment.	Early Technology Development Phase	4	
6	Capability to produce a prototype system or subsystem in a production relevant environment.	Prior to completion of Preliminary Design and the start of Contract Design	4	
7	Capability to produce systems, subsystems or components in a production representative environment.	Late Technology Development Phase leading to Milestone B	4	
8	Pilot line capability demonstrated. Ready to begin low rate production.	Engineering & Manufacturing Development (EMD) leading to a Milestone C decision.	5 - SCN	
9	Low Rate Production demonstrated. Capability in place to begin Full Rate Production.	Production & Deployment leading to a Full Rate Production (FRP) decision.	5 - SCN	
10	Full Rate Production demonstrated and lean production practices in place.		SCN	

Figure 2. Technology Readiness Levels (TRL).

	Technology development										
Criteria for readiness	Discovery		Feas	Feasibility		cticality		Tec	=		
1. Consistency with strategy											Application Technology has been assessed for by the technology user and vertifi
2. Technical validity							_				gy has techno
3. Cost, benefit, risk assessment							Technology				been a
4. Competitive technology assessment							ology				Application readiness n assessed for a specific production applicati user and verified as adequate for production
5. Scalability											tion re d for a verified
6. Collateral impact							read				a specific pr ed as adequ
7. People and organization readiness							readiness				oprodu ss:
8. Product line endorsement											for proc
9. Intellectual property protection											readiness a specific production application ied as adequate for production
10. Technology information											ă

Source: GAO analysis based on The Boeing Company's scorecard.

Approved for Public Release Doerry GAO-06-883₆

Institutionalizing Technology

NGIPS Technology Development Roadmap

- Developed in 2007
 - Coincident with establishing the Electric Ships Office
- What it Did
 - Defined the state of the technology
 - Defined the Need
 - Defined Architectures
 - Listed technology developments needed
 - Proposed a Business Mode
- What it Did Not Do
 - Define an Execution Plan

Figure 1: NGIPS Technology Development Roadmap

- Advanced Enclosed Mast / Sensor System on LPD 17
 - Classic ONR to Ship technology transition
 - Technology not fully institutionalized
- Hybrid Electric Drive on LHD 8
 - Technology demonstrated in U.K. Navy, and developed by industry
 - Technology not fully institutionalized
- Integrated Power System on DDG 1000
 - Started as a product line approach developed by NAVSEA
 - Morphed into ship specific systems
- Next Generation Integrated Power System
 - Implement Product Line Approach
 - Not yet transitioned to a ship program
- Set Based Design on Ship to Shore Connector
 - Process transitioned from Toyota via Universitv
 - **Basic Process codified in Ship Design** Manager Manual

Next Generation Integrated Power System (NGIPS) Technology Development Roadmap

Next Navy

Approved for Public Release Doerry

Navy after Nex

- Promote the use of Product Lines and Associated Technology Development Roadmaps
- Employ more Robust Metrics
- Improve Technology Transition Agreements
- Fully Implement Relationship Managers
- Modify the DOD Financial Management Regulation (DODFMR) to include Technology Transition Activities in BA-3.
- Modify DODFMR to split BA4 into Product Line Development and Advanced Component Development and Prototypes
- Assign OPNAV N091 as the resource sponsor for Product Line Development in addition to S&T.