Zonal Ship Design

CAPT Norbert Doerry, USN
Technical Director, Future Concepts and Surface Ship Design
NAVAL SEA SYSTEMS COMMAND
SEA 05DB

ASNE Reconfiguration and Survivability
Symposium 2005 (RS 2005)
February 16-17, 2005
Agenda

• Definitions
 – Survivability vs Quality of Service
 – Zonal vs Compartment Survivability

• Zonal Architectures

• Zonal Ship Design
Definition: Survivability

- Design Threats
- Design Threat Outcomes
 - Performance of the ship following exposure to a Design Threat
- Elements
 - Susceptibility
 - Vulnerability
 - Recoverability
- Zonal Survivability
- Compartment Survivability
 - Provide capability to recover selected undamaged loads in a damaged zone.
Definition: Quality of Service

• Metric for how reliable a distributed system provides its commodity to the standards required by the user
 – Measured as a MTBF
 – Not all service interruptions are QOS failures
 – Uses Reliability type analysis, but in different ways.

• QOS does not take into account Battle Damage, collisions, fire, flooding, etc.

• QOS ensures the ship can perform its mission under normal conditions (when it is not damaged).
Interaction of Survivability and QOS

- Many design decisions that impact Survivability will also impact QOS
 - Redundancy
 - May be added for either Survivability (Vital Load) or for QOS
 - Rating of equipment
- Exceptions
 - QOS is not sensitive to equipment location.
 - Survivability is not very sensitive to reliability of equipment.
 - System line-ups can impact one more than the other.
 - Parallel vs. Split Plant
Definition: Zonal Survivability

• The ability of a distributed system, when experiencing internal faults, to ensure loads in undamaged zones do not experience a service interruption.
 – Sometimes applied to only Vital Loads.
 – Usually requires one longitudinal bus to survive damage.

• Limits damage propagation to the fewest number of zones.
 – Enables concentration of Damage Control / Recoverability Efforts.
Definition: Compartment Survivability

• Provide capability to recover selected undamaged loads in a damaged zone.
 – Often requires redundant feeds.

• Which Loads to Select?
 – Non-redundant Mission Systems
 – Loads supporting damage control efforts
Single Bus Architectures

- Can achieve Zonal Survivability if Generation or Storage is in every zone.
 - Generation must be in First and Last Zones
 - In-Zone Distribution must be buffered from disturbances on longitudinal bus
- Attractive if Generation / Storage is less expensive than distribution.
Dual Bus Architectures

- Generation / Storage is not required in every zone.
- In-Zone Distribution must be buffered from disturbances on longitudinal bus.
- Longitudinal buses must be physically protected to prevent loss of both buses from same event.
- Without sufficient storage elements, generation and distribution elements must be rated to account for shifting of loads on loss of a longitudinal bus.
- Attractive if Generation / Storage is more expensive than distribution.
Hybrid / Multiple Bus Architectures

- Variations to single and dual bus architectures can optimize cost for specific applications.
 - Inability to locate generation in “end zones” in single bus architecture
 - Minimize cost of longitudinal bus distribution node
Non-Zonal Loads

- Loads requiring “Compartment Survivability”
- Requires junction of main and alternate sources to be within damage volume of load.
- Multiple ways of providing “Compartment Survivability”
 - Most require additional equipment beyond that needed for Zonal Survivability.
Zonal Ship Design: Concept Studies

- Identify Zone Boundaries
- Define notional architecture for each distributed system
- Identify and allocate Mission Systems elements to zones
- Create a list of equipment to implement the notional architecture and mission systems
- Incorporate the equipment and architectures into the ship synthesis model.
- Define Ship/Force CONOPS / DRM
 - Define Design Threats
 - Define Design Threat Outcomes
Zonal Ship Design: Preliminary & Contract Design

- Establish Zone Boundaries and Zonal Architectures
- Develop System CONOPS
- Develop Equipment Lists
- Based on CONOPS / DRM develop ship QOS requirements and allocate QOS requirements to Distributed Systems.
 - Verify QOS by analysis
- Arrangement of major equipment and longitudinal buses
 - Meet Design Threat Outcome requirements
- Total Ship Survivability Analysis
 - Verify Design Threat Outcomes
- Incorporation of Zonal Design requirements into Ship Specification
Zonal Ship Design: Detail Design and Construction

- Finalize location of equipment and distributed system routing
- Evaluate survivability of longitudinal buses and apply selective protection where needed
- Ensure selected equipment are provided compartment level survivability
- Verify QOS and Survivability requirements are met
- Ensure Procurement Requests for equipment contain the necessary allocated requirements to meet QOS and survivability requirements
Summary

• Zonal Ship Design must be done from a Total Ship perspective.
 – Mission Systems and Distributed Systems must be designed synergistically

• Distributed System Design must account for both Survivability and Quality of Service.

• The choice of Distributed System Architecture depends on survivability and QOS requirements and the relative cost of different elements of the distributed system.